Waste and Biomass Valorization

, Volume 10, Issue 11, pp 3373–3382 | Cite as

Rice and Cassava Distillers Dried Grains in Vietnam: Nutritional Values and Effects of Their Dietary Inclusion on Blood Chemical Parameters and Immune Responses of Growing Pigs

  • Ionelia TaranuEmail author
  • Tien-Thanh Nguyen
  • Kim-Dang Pham
  • Mihail A. Gras
  • Gina C. Pistol
  • Daniela E. Marin
  • Catalin Rotar
  • Mihaela Habeanu
  • Phu-Ha Ho
  • Thanh-Mai Le
  • Thi Thu-Hang Bui
  • Dinh-Vuong Mai
  • Son Chu-KyEmail author
Original Paper


This work investigated the nutritional values of rice and cassava distillers dried grains (DDG) collected in Vietnam and effects of their supplementation on several blood chemical parameters and immune responses of growing pigs. These two DDGs were determined for approximate moisture, protein, lipid, ash, starch, calcium phosphorous, and amino acids. For the effects of dietary DDGs supplementation on chemical parameters of growing pigs, 30 crossbred TOPIG pigs were randomly assigned to one of the three experimental dietary treatments (control, 7% rice DDG or 4% cassava DDG). Cassava DDG was very rich in crude fiber (32.8%) and low in protein (12.0%) while rice DDG was highly rich in protein (70.4%) and low in fiber (2.9%). At the end of the feeding trial pig performance (average daily gain, feed intake and feed/gain ratio) were under the normal limits and no effect of dietary DDG was found. By contrast, a statistically significant decreasing effect of cassava DDG diets on glucose (− 12.55%) and iron (− 23.81%) concentration and a tendency to decrease triglycerides (− 21.87%) were found. The production of IgM and IgG also increased significantly by 26.5 and 18.7% in plasma of pigs fed with rice DDG diet. DDGs diets did not influence in a significant manner the gene expression of pro- or anti-inflammatory cytokines.


Cassava Rice Dried distillers grains Nutritional values Pig feeding Performance Health 



This work was financially co-supported by the Ministry of Education and Scientific Research (Romania) and the Ministry of Science and Technology (Vietnam) via the bilateral project (Grant No. 15/2014/HD-NDT). We thank Saigon - Dongxuan Beer and Alcohol JSC and BSR-BF for kindly providing us with rice and cassava distillers grains, respectively.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ministry-of-Trade-and-Industry-of-Vietnam.: Targets of the scheme to develop biofuels in Vietnam to 2015 and the vision to 2025(Decision No 177/2007/QD-TTg),128127&_dad=portal&_schema=PORTAL&item_id=5049307.2007
  2. 2.
    Nguyen, N.X.D., Luu, H.M., Udén, P.: Tropical fibre sources for pigs—digestibility, digesta retention and estimation of fibre digestibility in vitro. Anim. Feed Sci. Tech. 102(1–4), 109–124 (2002)Google Scholar
  3. 3.
    Ngoc, T.T., Len, N.T., Lindberg, J.E.: Chemical characterization and water holding capacity of fibre-rich feedstuffs used for pigs in Vietnam. Asian-Australas. J. Anim. Sci. 25(6), 861–868 (2012)CrossRefGoogle Scholar
  4. 4.
    Régnier, C., et al.: Effects of processing methods on the digestibility and palatability of cassava root in growing pigs. Anim. Feed Sci. Technol. 162(3–4), 135–143 (2010)CrossRefGoogle Scholar
  5. 5.
    Le, T.M., et al., Utilization of catfish oil in diets based on dried cassava root waste for crossbred fattening pigs in the Mekong delta of Vietnam. Livest. Res. Rural Dev. 15(4), 2003 (2004)Google Scholar
  6. 6.
    Hastad, C.W., et al.: Adding Dried Distillers Grains to Swine Diets Affects Feed Preference, pp. 149–159. Kansas State University, Swine Research (2005)Google Scholar
  7. 7.
    Cherdthong, A., Pornjantuek, B., Wachirapakorn, C.: Effect of feeding cassava bioethanol waste on nutrient intake, digestibility, and rumen fermentation in growing goats. Trop. Anim. Health Prod. 48(7), 1369–1374 (2016)CrossRefGoogle Scholar
  8. 8.
    Phoemchalard, C., Uriyapongson, S.: Effect of cassava bioethanol by-product and crude palm oil in Brahman x Thai native yearling heifer cattle diets: II. Carcass characteristics and meat quality. Trop. Anim. Health Prod. 47(8), 1629–1631 (2015)CrossRefGoogle Scholar
  9. 9.
    Miyaji, M., et al.: Effect of replacing corn with brown rice grain in a total mixed ration silage on milk production, ruminal fermentation and nitrogen balance in lactating dairy cows. Anim. Sci. J. 83(8), 585–593 (2012)CrossRefGoogle Scholar
  10. 10.
    Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991)CrossRefGoogle Scholar
  11. 11.
    Le Thanh, M., et al.: Analytical Methods in Fermentation Technology. Science and Technology Publishing House, New York (2007)Google Scholar
  12. 12.
    Spiehs, M.J., Whitney, M.H., Shurson, G.C.: Nutrient database for distiller’s dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 80(10), 2639–2645 (2002)Google Scholar
  13. 13.
    Taranu, I., et al.: Assessment of the potential of a boron-fructose additive in counteracting the toxic effect of Fusarium mycotoxins. Br. J. Nutr. 106(3), 398–407 (2011)CrossRefGoogle Scholar
  14. 14.
    Marin, D.E., et al.: Changes in performance, blood parameters, humoral and cellular immune responses in weanling piglets exposed to low doses of aflatoxin. J. Anim. Sci. 80(5), 1250–1257 (2002)CrossRefGoogle Scholar
  15. 15.
    Pistol, G.C., et al.: Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen. PLoS ONE 10(5), e0127503 (2015)CrossRefGoogle Scholar
  16. 16.
    Meurens, F., et al.: Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops. Vet. Res. 40(1), 5 (2009)CrossRefGoogle Scholar
  17. 17.
    Salvador, E.M., Steenkamp, V., McCrindle, C.M.E.: Production, consumption and nutritional value of cassava (Manihot esculenta Crantz) in Mozambique: an overview. J. Agri. Biotech. Sustain. Dev. 6(3), 29–38 (2014)CrossRefGoogle Scholar
  18. 18.
    Stupak, M., Improving protein content in cassava storage roots. Dotorate dissertation, Eidgenoessische Technische Hochschule Zuerich (ETH Zuerich), 2008Google Scholar
  19. 19.
    Cao, X., et al.: Differences in functional properties and biochemical characteristics of congenetic rice proteins. J. Cereal. Sci. 50(2), 184–189 (2009)CrossRefGoogle Scholar
  20. 20.
    Belyea, R.L., et al.: Sources of variation in composition of DDGS. Anim. Feed Sci. Tech. 159(3), 122–130 (2010)CrossRefGoogle Scholar
  21. 21.
    Choi, H.S., et al.: Nutritive and economic values of corn distiller’s dried grains with solubles in broiler diets. Asian Australas. J. Anim. Sci. 21(3), 414–419 (2008)CrossRefGoogle Scholar
  22. 22.
    Kim, Y., et al.: Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresour. Technol. 99(12), 5165–5176 (2008)CrossRefGoogle Scholar
  23. 23.
    Liu, K.S.: Chemical composition of distillers grains, a review. J. Agri. Food Chem. 59(5), 1508–1526 (2011)CrossRefGoogle Scholar
  24. 24.
    Chauynarong, N., Kanto, M.M.B.,U., Iji, P.A.: Variation in nutrient composition of cassava pulp and its effects on in vitro digestibility. Asian J. Poult Sci 9(4), 203–212 (2015)CrossRefGoogle Scholar
  25. 25.
    Belyea, R.L., Rausch, K.D., Tumbleson, M.E.: Composition of corn and distillers dried grains with solubles from dry grind ethanol processing. Bioresour. Technol. 94(3), 293–298 (2004)CrossRefGoogle Scholar
  26. 26.
    NIAS, Ingredients and Nutritional Value of Animal Feed. Agricultural Publishing House, Hanoi (2001)Google Scholar
  27. 27.
    Luh, B.S.: Rice: Utilization, 2nd edn. Springer, New York (1991)CrossRefGoogle Scholar
  28. 28.
    Monceaux, D.A., Kuehner, D.: Dryhouse technologies and DDGS production. In: Ingledew, W.M. (eds.) The Alcohol Textbook, 5th edn, pp. 303–322. Nottingham University Press, Nottingham (2009)Google Scholar
  29. 29.
    Montagnac, J.A., Davis, C.R., Tanumihardjo, S.A.: Nutritional value of Cassava for use as a staple food and recent advances for improvement. Compr. Rev. Food Sci. F. 8(3), 181–194 (2009)CrossRefGoogle Scholar
  30. 30.
    Morgan, N.K., Choct, M.: Cassava: nutrient composition and nutritive value in poultry diets. Anim. Nutr. 2(4), 253–261 (2016)CrossRefGoogle Scholar
  31. 31.
    Nuss, E.T., Tanumihardjo, S.A.: Maize: a paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. F. 9(4), 417–436 (2010)CrossRefGoogle Scholar
  32. 32.
    Oko, A.O., Ugwu, S.I.: The proximate and mineral compositions of five major rice varieties in Abakaliki, South-Eastern Nigeria. Int. J. Plant Physiol. Biochem. 3(2), 25–27 (2011)Google Scholar
  33. 33.
    Adeniji, T.A., et al.: Mineral composition of five improved varieties of cassava. Niger. Food J. 25(2), 39–44 (2007)Google Scholar
  34. 34.
    Xu, G., et al. Effect of feeding diets containing corn distillers dried grains with solubles (DDGS), with or without phytase, on nutrient digestibility and excretion in nursery pigs. Abstract 286 at the Midwetern Section ASAS and Midwest Brancj ADSA 2006, Des Moines IA, (2006)Google Scholar
  35. 35.
    Batal, A., Dale, N.: Mineral composition of distillers dried drains with solubles. J. Appl. Poult. Res. 12(4), 400–403 (2003)CrossRefGoogle Scholar
  36. 36.
    Pedersen, C., Boersma, M.G., Stein, H.H.: Digestibility of energy and phosphorus in ten samples of distillers dried grains with solubles fed to growing pigs. J. Anim. Sci. 85(5), 1168–1176 (2007)CrossRefGoogle Scholar
  37. 37.
    Charoenwattanasakun, N., et al.: Effect of feeding cassava pulp in starting growing and finishing pig diets on growth performance and carcass characteristics. Proceedings of the 47th Kasetsart University Annual Conference, Kasetsart, 17–20 March, 2009: pp 148–155Google Scholar
  38. 38.
    Lallo, C.H.O., et al.: Effect on pig performance of a diets with cassava root by products as a replacement for corn grain. Trop. Agric. 93(2), 111–120 (2016)Google Scholar
  39. 39.
    Wang, L.F., Beltranena, E., Zijlstra, R.T.: Diet nutrient digestibility and growth performance of weaned pigs fed wheat dried distillers grains with solubles (DDGS). Anim. Feed Sci. Technol. 218, 26–32 (2016)CrossRefGoogle Scholar
  40. 40.
    Reverri, E.J., et al.: Black beans, fiber, and antioxidant capacity pilot study: examination of whole foods vs. functional components on postprandial metabolic, oxidative stress, and inflammation in adults with metabolic syndrome. Nutrients 7(8), 6139–6154 (2015)CrossRefGoogle Scholar
  41. 41.
    Bessesen, D.H.: The role of carbohydrates in insulin resistance. J. Nutr. 131(10), 2782S–2786S (2001)CrossRefGoogle Scholar
  42. 42.
    Ou, S., et al.: In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agric. Food Chem. 49(2), 1026–1029 (2001)CrossRefGoogle Scholar
  43. 43.
    Yan, J.Y., et al.: Investigations of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic against alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats. J. Ethnopharmacol. 172, 202–213 (2015)CrossRefGoogle Scholar
  44. 44.
    Rotimi, O.A., et al.: Effects of fibre-enriched diets on tissue lipid profiles of MSG obese rats. Food Chem. Toxicol. 50(11), 4062–4067 (2012)CrossRefGoogle Scholar
  45. 45.
    Ramos, S.C., et al.: The role of soluble fiber intake in patients under highly effective lipid-lowering therapy. Nutr. J. 10, 80 (2011)CrossRefGoogle Scholar
  46. 46.
    Sadeghi, A., Toghyani, M., Gheisari, A.: Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity, and fiber preference in broiler chicks. Poult. Sci. 94(11), 2734–2743 (2015)CrossRefGoogle Scholar
  47. 47.
    Ghatak, S.B., Panchal, S.J.: Investigation of the immunomodulatory potential of oryzanol isolated from crude rice bran oil in experimental animal models. Phytother. Res. 26(11), 1701–1708 (2012)CrossRefGoogle Scholar
  48. 48.
    Karasawa, K., et al.: Fermented soybean powder with rice mold in the absence of salt stimulates the cellular immune system and suppresses the humoral immune response in mice. J. Nutr. Sci. Vitaminol. 59(6), 564–569 (2013)CrossRefGoogle Scholar
  49. 49.
    Liao, S.F., Wang, T., Regmi, N.: Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. SpringerPlus 4, 147 (2015)CrossRefGoogle Scholar
  50. 50.
    Milo, L.A., et al.: Neutrophil and small intestinal lymphocyte migration after Salmonella typhimurium infection: impact of fermentable fiber. J. Pediatr. Gastroenterol. Nutr. 39(1), 73–79 (2004)CrossRefGoogle Scholar
  51. 51.
    Ai, G., et al.: Hepatoprotective evaluation of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic: In vitro and in vivo studies. J. Ethnopharmacol. 146(3), 794–802 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ionelia Taranu
    • 1
    Email author
  • Tien-Thanh Nguyen
    • 2
  • Kim-Dang Pham
    • 3
  • Mihail A. Gras
    • 1
  • Gina C. Pistol
    • 1
  • Daniela E. Marin
    • 1
  • Catalin Rotar
    • 1
  • Mihaela Habeanu
    • 1
  • Phu-Ha Ho
    • 2
  • Thanh-Mai Le
    • 2
  • Thi Thu-Hang Bui
    • 2
  • Dinh-Vuong Mai
    • 2
  • Son Chu-Ky
    • 2
    Email author
  1. 1.National Research Development Institute for Animal Biology and Nutrition (IBNA)IlfovRomania
  2. 2.School of Biotechnology and Food Technology (SBFT)Hanoi University of Science and Technology (HUST)HanoiVietnam
  3. 3.Faculty of Animal Science (FAS)Vietnam National University of Agriculture (VNUA)HanoiVietnam

Personalised recommendations