Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 11, pp 3485–3491 | Cite as

Mechanical Activation on Phosphogypsum: Hydrosodalite System

  • Dalia NizevičienėEmail author
  • Danutė Vaičiukynienė
  • Andrius Kielė
  • Vilimantas Vaičiukynas
Original Paper
  • 167 Downloads

Abstract

The application of phosphogypsum in the production of binding materials is problematic because of phosphate, fluorine and other soluble impurities. These impurities influence the strength development of binding materials and during operating time can be released (efflorescence) from binding materials’ products. For these reasons, it is important to neutralize the above-mentioned impurities. The objective of the work was to investigate the neutralization process of the acid impurities of hemihydrate phosphogypsum (obtained from Kovdor apatite mine) with zeolite hydrosodalite. Mechanical activation together with the neutralizing zeolite additive was used in this research. Mechanical activation was carried out in a ball mill. Two types of samples were formed: one type with non-milled mixtures and the second type with milled mixtures. The additive of 0, 3, 5, and 10% of hydrosodalite was chosen. This paper describes the process of adsorbing of hazardous phosphate impurities by hydrosodalite. The compressive strength of phosphogypsum specimens with hydrosodalite additives subjected to mechanical treatment was higher as compared to the specimens without mechanical activation and additive of hydrosodalite. In this case pH values of milled mixture with hydrosodalite become neutral for these samples. It was determined that the mixture of phosphogypsum with hydrosodalite under mechanical treatment is an effective additive for neutralizing the acidic phosphogypsum medium.

Keywords

Phosphogypsum Zeolite Hydrosodalite Mechanical activation 

References

  1. 1.
    Ding, Q.R., Ma, Y.Y., Xiang, X., Cao, H., Chen, X.J.: Influence of caustic soda flakes-phosphogypsum on activation and microstructure of carbide slag-flyash. Adv. Mater. Res. 790, 94–97 (2013)CrossRefGoogle Scholar
  2. 2.
    Al Hwaiti, M.S.: Influence of treated waste phosphogypsum materials on the properties of ordinary portland cement. Bangladesh J. Sci. Ind. Res. 50(4), 241–250 (2015)CrossRefGoogle Scholar
  3. 3.
    Lin, Y., Cao, J.X., Lin, Q.: Influence mechanism of lime on strength and water-resistance properties of phosphogypsum autoclaved brick. J. Appl. Mech. Mater. 204, 1492–1498 (2012)CrossRefGoogle Scholar
  4. 4.
    Min, Y., Jueshi, Q., Ying, P.: Activation of fly ash–lime systems using calcined phosphogypsum. Constr. Build. Mater. 22(5), 1004–1008 (2008)CrossRefGoogle Scholar
  5. 5.
    Žvironaitė, J., Gaidučis, S., Kaminskas, A., Mačiulaitis, R.: Hydration and hardening of composite binder containing mechanically activated hemihydrate phosphogypsum. J. Mater. Sci. (Medžiagotyra) 14(4), 356–360 (2008)Google Scholar
  6. 6.
    Kaminskas, A., Gaidučis, S., Mačiulaitis, R.: Influence of granulated milled slag glass additive on hemihydrate phosphogypsum hardening. J. Mater. Sci. (Medžiagotyra) 13(3), 224–228 (2007)Google Scholar
  7. 7.
    Gaidučis, S., Žvironaitė, J., Mačiulaitis, R., Jakovlev, G.: Resistance of phosphogypsum cement pozzolanic compositions against the influence of water. J. Mater. Sci. 17(3), 308–313 (2011)Google Scholar
  8. 8.
    Kybartiene, N., Leskeviciene, V., Nizeviciene, D., Valančius, Z.: The influence of Ca and Mg carbonate on the properties of semi-hydrate phosphogypsum. Scientific Proceedings of RTU. Mater. Sci. Appl. Chem. 1, 131–138 (2004)Google Scholar
  9. 9.
    Strydom, C.A., Potgieter, J.H.: Dehydration behaviour of a natural gypsum and a phosphogypsum during milling. Thermochim. Acta 332(1), 89–96 (1999)CrossRefGoogle Scholar
  10. 10.
    Nizevičienė, D., Vaičiukynienė, D., Vaitkevičius, V., Rudžionis, Ž.: Effects of waste fluid catalytic cracking on the properties of semi-hydrate phosphogypsum. J. Clean. Prod. 137, 150–156 (2016)CrossRefGoogle Scholar
  11. 11.
    Kaminskas, A., Pričkaitienė, J., Rimkevičius, M., Špokauskas, A.: Investigations of water resistance of samples made from extractive semi-hydrate gypsum. J. Mater. Sci. (Medžiagotyra). 7(1), 44–47 (2001)Google Scholar
  12. 12.
    Potgieter, J.H., Potgieter, S.S., McCrindle, R.I., Strydom, C.A.: An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement. Cem. Concr. Res. 33(8), 1223–1227 (2003)CrossRefGoogle Scholar
  13. 13.
    Faqing, X.C.D.Y.D., Peng, X.Z.H.J.F.: Study on preparation of ammonium sulfate by solid-phase ball milling from phosphogypsum [J]. Non-Metallic Mines 3, 021 (2010)Google Scholar
  14. 14.
    Chunfeng, X., Zhonglei, D.Y.D.F.X., Peng, H.J.F.: Study on Preparation of urea-gypsum by solid-phase ball milling from phosphogypsum [J]. Non-Metallic Mines 1, 008 (2011)Google Scholar
  15. 15.
    Singh, M.: Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster. Cem. Concr. Res. 33(9), 1363–1369 (2003)CrossRefGoogle Scholar
  16. 16.
    Vaičiukynienė, D., Vaitkevičius, V., Rudžionis, Ž, Vaičiukynas, V., Navickas, A.A., Nizevičienė, D.: Blended cement systems with zeolitized silica fume. J. Mater. Sci. (Medžiagotyra) 22(2), 299–304 (2016)Google Scholar
  17. 17.
    Zeng, S., Wang, R., Zhang, Z., Qiu, S.: Solventless green synthesis of sodalite zeolite using diatomite as silica source by a microwave heating technique. Inorg. Chem. Commun. 70, 168–171 (2016)CrossRefGoogle Scholar
  18. 18.
    Moloy, E.C., Liu, Q., Navrotsky, A.: Formation and hydration enthalpies of the hydrosodalite family of materials. Microporous Mesoporous Mater. 88(1), 283–292 (2006)CrossRefGoogle Scholar
  19. 19.
    Yang, L., Cao, J., Li, C.: Enhancing the hydration reactivity of hemi-hydrate phosphogypsum through a morphology-controlled preparation technology. Chin. J. Chem. Eng. 24(9), 1298–1305 (2016)CrossRefGoogle Scholar
  20. 20.
    Boldyrev, V.V.: Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev. 75(3), 177 (2006)CrossRefGoogle Scholar
  21. 21.
    Martusevicius, M., Kaminskas, R., Mituzas, J.: The Chemical Technology of Binding Materials. Kaunas, Lithuanian (2002)Google Scholar
  22. 22.
    Leškevičienė, V., Nizevičienė, D.: Anhydrite binder calcined from phosphogypsum. Ceram. Silik. 54(2), 152–159 (2010)Google Scholar
  23. 23.
    Leškevičienė, V., Nizevičienė, D.: Influence of the setting activators on the physical mechanical properties of phosphoanhydrite. Chem. Ind. Chem. Eng. Q. 20(2), 233–240 (2014)CrossRefGoogle Scholar
  24. 24.
    Leškevičienė, V., Nizevičienė, D.: Badania cementu anhydrytowego otrzymywanego z fosfogipsu. Cem. Wapno Beton 18(6), 362–369 (2013)Google Scholar
  25. 25.
    Edinger, S.E.: An investigation of the factors which affect the size and growth rates of the habit faces of gypsum. J. Cryst. Growth 18(3), 217–224 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electrical and Electronics EngineeringKaunas University of TechnologyKaunasLithuania
  2. 2.Faculty of Civil Engineering and ArchitectureKaunas University of TechnologyKaunasLithuania
  3. 3.Faculty of Water and Land ManagementAleksandras Stulginskis UniversityAkademijaLithuania

Personalised recommendations