Waste and Biomass Valorization

, Volume 10, Issue 10, pp 2801–2823 | Cite as

Influence of Alternate Fuels on the Performance and Emission from Internal Combustion Engines and Soot Particle Collection Using Thermophoretic Sampler: A Comprehensive Review

  • Rishikesh Kumar Singh
  • Arnab Sarkar
  • Jyoti Prasad ChakrabortyEmail author


There have been a tremendous growth in engine industry for the past few decades. Due to industrial development and improved living standards, consumption of crude oil increased to a new height and due to which our atmosphere got polluted to an extent of self-destruction. Alternate fuels like biodiesel, biogas, compressed natural gas (CNG), hydrogen and liquefied petroleum gas (LPG) could be seen as an alternative to conventional crude oil. Performance and emission of internal combustion engines using alternate fuels play important role in its development. In a nut-shell, this article provides comprehensive review on properties along with its performance and emission for alternate fuels, especially biodiesel obtained from different feedstocks. This article covers impact of various working parameters and conditions for internal combustion engine running on different alternate fuels. It also discusses the impact of soot particles on environment and different collection methods for soot particles. There is also brief review on thermophoretic sampler for soot collection along with existing thermophoretic samplers.


Alternate fuels IC engine Biodiesel Thermophoretic sampler Soot particles 


  1. 1.
    Vehicle technologies office advanced combustion engines source
  2. 2.
    Maurya, R.K., Agarwal, A.K.: Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine. Appl. Energy 88, 1169–1180 (2011)Google Scholar
  3. 3.
    De, B., Panua, R.S.: An experimental study on performance and emission characteristics of vegetable oil blends with diesel in a direct injection variable compression ignition engine. Proced. Eng. 90, 431–438 (2014)Google Scholar
  4. 4.
    Bugaje, I.M., Mohammed I.A.: Biofuels production for the transport sector in Nigeria. Int J Dev Std 3(2), 30–39 (2008)Google Scholar
  5. 5.
    Ali, B.B., Halim, A., Abas, F.B.: Development in automobile engine technology, Second National Conference, Thermal Engineering and SciencesGoogle Scholar
  6. 6.
    Patel, A.K., Chaudhary, H.H., Patel, K.S., Sen, D.J.: Air pollutants all are chemical compounds hazardous to ecosystem. World J. Pharm. Sci. 729: 2321–3310Google Scholar
  7. 7.
    Intergovernmental Panel on Climate Change (IPCC): Climate change 2007: synthesis report. Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change. Core Writing Team, Pachauri, R. K., Reisinger, A. (eds.) Geneva: IPCC (2007)Google Scholar
  8. 8.
    Jacobson, M.Z.: A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols. Geophys. Res. Lett. 27, 217–220 (2000)Google Scholar
  9. 9.
    Hansen, J., Sato, M., Ruedy, R., Lacis, A., Oinas, V.. Global warming in the twenty-first century: an alternative scenario. Proc. Natl. Acad. Sci. 97, 9875–9880 (2000)Google Scholar
  10. 10.
    Ramanathan, V., Carmichael, G.: Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008)Google Scholar
  11. 11.
    Shindell, D., Faluvegi, G.: Climate response to regional radiative forcing during the twentieth century. Nat. Geosci. 2, 294–300 (2009)Google Scholar
  12. 12.
    Prasad, R., Bella, V.R.: A review on diesel soot emission. its effect and control, Bull. Chem. React. Eng. Catal. 5(2), 69–86 (2010)Google Scholar
  13. 13.
    Gupta, T., Agarwal, A.K.: Toxicology of combustion products, handbook of combustion, Wiley -VCH Books,Google Scholar
  14. 14.
    Olivier, J.G.J.: Trends in global CO2 and total greenhouse gas emissions: 2017 report. PBL Netherlands Environmental Assessment Agency, The HagueGoogle Scholar
  15. 15.
    Hansdah, D., Murugan, S., Das, L.M.: Experimental studies on a DI diesel engine fueled with bioethanol–diesel emulsions. Alex. Eng. J. 52, 267–276 (2013)Google Scholar
  16. 16.
    Crookes, R.J., Korakianitis, T., Namasivayam, A.M.: A systematic experimental assessment of the use of rapeseed methyl ester (RME) as a compression ignition engine fuel during conventional and dual-fuel operation, TAE 7th International Colloquium on Fuels, Stuttgart, pp. 14–15, (2009)Google Scholar
  17. 17.
    Ong, H.C., Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I., Chong, W.T., Boosroh, M.H.: Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra. Energy Convers. Manag. 73, 245–255 (2013)Google Scholar
  18. 18.
    Liaquat, A.M., Masjuki, H.H., Kalam, M.A., Varman, M., Hazrat, M.A., Shahabuddin, M., et al.: Application of blend fuels in a diesel engine. Energy Proced. 14, 1124–1133 (2012)Google Scholar
  19. 19.
    Mofijur, M., Masjuki, H.H., Kalam, M.A., Hazrat, M.A., Liaquat, A.M., Shahabuddin, M., et al.: Prospects of biodiesel from Jatropha in Malaysia. Renew. Sustain. Energy Rev. 16, 5007–5020 (2012)Google Scholar
  20. 20.
    Palash, S.M., Kalam, M.A., Masjuki, H.H., Masum, B.M., Rizwanul Fattah, I.M., Mofijur, M.: Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew. Sustain. Energy Rev. 23, 473–490 (2013)Google Scholar
  21. 21.
    Kalam, M.A., Masjuki, H.H.: Recent developments on biodiesel in Malaysia. J. Sci. Ind. Res. 64, 920–927 (2005)Google Scholar
  22. 22.
    Masjuki, H.H., Kalam, M.A., Syazly, M., Mahlia, T.M.I., Rahman, A.H., Redzuan, M., et al.: Experimental evaluation of an unmodified diesel engine using biodiesel with fuel additive. Ieee, New York (2006)Google Scholar
  23. 23.
    Shahabuddin, M., Kalam, M.A., Masjuki, H.H., Bhuiya, M.M.K., Mofijur, M.: An experimental investigation into biodiesel stability by means of oxidation and property determination. Energy 44:616–622 (2012)Google Scholar
  24. 24.
    Franco, Z., Nguyen, Q.D.: Flow properties of vegetable oilediesel fuel blends. Fuel 90, 838–843 (2011)Google Scholar
  25. 25.
    Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G., Dimaratos, A.M., Founti, M.A.: Comparative environmental behavior of bus engine operating on blends of diesel fuel with four straight vegetable oils of Greek origin: sunflower, cottonseed, corn and olive. Fuel 90, 3439–3446 (2011)Google Scholar
  26. 26.
    Kleinov, A., Vailing, I., Labaj, J.L., Mikulec, J., Cvengro, J.: Vegetable oils and animal fats as alternative fuels for diesel engines with dual fuel operation. Fuel Process. Technol. 92, 1980–1986 (2011)Google Scholar
  27. 27.
    Blin, J., Brunschwig, C., Chapuis, A., Changotade, O., Sidibe, S.S., Noumi, E.S., Girard, P.: Characteristics of vegetable oils for use as fuel in stationary diesel enginesdtowards specifications for a standard in West Africa. Renew. Sustain. Energy Rev. 22, 580–597 (2013)Google Scholar
  28. 28.
    Mittelbach, M.: Diesel fuel derived from vegetable oils, VI: specifications and quality control of biodiesel. Bioresour. Technol. 56, 7–11 (1996)Google Scholar
  29. 29.
    Abolle, A., Kouakou, L., Planche, H.: The viscosity of diesel oil and mixtures with straight vegetable oils: palm, cabbage palm, cotton, groundnut, copra and sunflower. Biomass Bioenergy 33, 1116–1121 (2009)Google Scholar
  30. 30.
    Nguyen, T., Do, L., Sabatini, D.A.: Biodiesel production via peanut oil extraction using diesel-based reversemicellar microemulsions. Fuel 89, 2285–2291 (2010)Google Scholar
  31. 31.
    Rickeard, D.J., Thompson, N.D., A review of the potential for bio-fuels as transportation fuels, SAE Paper 932778 (1993)Google Scholar
  32. 32.
    Pullen, J., Saeed, K.: Factors affecting biodiesel engine performance and exhaust emissions part I: review, Energy 72, 1–16 (2014). Google Scholar
  33. 33.
    CEN (European Committee for Standardization). EN 14214. Automotive fuels fatty acid methyl esters (FAME) for diesel engines – requirements and test methods. Brussels: CENGoogle Scholar
  34. 34.
    ASTM (American Society for Testing and Materials) International. D6751 Standard test method for biodiesel fuel blend stock (B100) for middle distillate fuels. ASTM, West Conshohocken, PAGoogle Scholar
  35. 35.
    Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H., Mekhilef, S.: A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 16, 2070–2093 (2012)Google Scholar
  36. 36.
    Leung, D.Y.C., Xuan, W.U., Leung, M.K.H.: A review on biodiesel production using catalyzed transesterification. Appl. Energy 87, 1083–1095 (2010)Google Scholar
  37. 37.
    Rashedul, H.K., Masjuki, H.H., Kalam, M.A., Ashraful, A.M., Rahman, S.M.A., Shahir, S.A.: The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine. Energy Convers. Manag. 88, 348–364 (2014)Google Scholar
  38. 38.
    Panwar, N.L., Shrirame, H.Y., Rathore, N.S., Jindal, S., Kurchania, A.K.: Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil. Appl. Therm. Eng. 30, 245–249 (2010)Google Scholar
  39. 39.
    Efe, U., Ceviz, M.A., Temur, H.: Comparative engine characteristics of biodiesels from hazelnut, corn, soybean, canola and sunflower oils on DI diesel engine. Renew. Energy 119, 142–151 (2018)Google Scholar
  40. 40.
    Devan, P.K., Mahalakshmi, N.V.: A study of the performance, emission and combustion characteristics of a compression ignition engine using methyl ester of paradise oil–eucalyptus oil blends. Appl. Energy 86, 675–680 (2009)Google Scholar
  41. 41.
    Gumus, M.: A comprehensive experimental investigation of combustion and heat release characteristics of a biodiesel (hazelnut kernel oil methyl ester) fueled direct injection compression ignition engine. Fuel 89, 2802–2814 (2010)Google Scholar
  42. 42.
    Sanjid, A., Masjuki, H.H., Kalam, M.A., Abedin, M.J., Rahman, S.M.A.: Experimental investigation of mustard biodiesel blend properties, performance, exhaust emission and noise in an unmodified diesel engine. APCBEE Proced. 10, 149–153 (2014)Google Scholar
  43. 43.
    Ragit, S.S., Mohapatra, S.K., Kundu, K.: Performance and emission evaluation of a diesel engine fuelled with methyl ester of neem oil and filtered neem oil. J. Sci. Ind. Res. 69, 62–66 (2010)Google Scholar
  44. 44.
    Araby, R.E., et al.: Study on the characteristics of palm oil–biodiesel–diesel fuel blend, Egypt. J. Petrol. (2017). Google Scholar
  45. 45.
    Dwivedi, G., Sharma, M.P.: Prospects of biodiesel from Pongamia in India. Renew. Sustain. Energy Rev. 32, 114–122 (2014)Google Scholar
  46. 46.
    Kumar, M.V., Babu, A.V., Kumar, P.R.: Experimental investigation on the effects of diesel and mahua biodiesel blended fuel in direct injection diesel engine modified by nozzle orifice diameters. Renew. Energy 119, 388–399 (2018)Google Scholar
  47. 47.
    Lenin, A.H., Ravi, R., Arumugham, S., Thyagarajan, K.: Performance, emission and combustion evaluation of diesel engine using methyl esters of mahua oil. Int J Environ Sci 3, 639–649 (2012)Google Scholar
  48. 48.
    Ashraful, A.M., Masjuki, H.H., Kalam, M.A., Fattah, I.M.R., Imtenan, S., Shahir, S.A., et al.: Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: a review. Energy Convers. Manag. 80, 202–228 (2014)Google Scholar
  49. 49.
    Muralidharan, K., Vasudevan, D.: Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends. Appl. Energy 88, 3959–3968 (2011)Google Scholar
  50. 50.
    Ingle, S.S., Nandedkar, V.M., Nagarhalli, M.V.: Prediction of performance and emission of castor oil biodiesel in diesel engine, Int. J. Mech. Prod. Eng. 2320–2092, (2013)Google Scholar
  51. 51.
    Valente, O.S., Silva, M.J.D., Pasa, V.M.D., Belchior, C.R.P., Sodre, J.R.: Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel 89, 3637–3642 (2010)Google Scholar
  52. 52.
    Shojaeefard, M.H., Etgahni, M.M., Meisami, F., Barari, A.: Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine. Environ. Technol. 34, 2019–2026. (2013). Google Scholar
  53. 53.
    Bueno, A.V., Pereira, M.P.B., Pontes, J.V.D.O., Luna, F.M.T.D. Cavalcante, C.L. Jr.: Performance and emissions characteristics of castor oil biodiesel fuel Blends. Appl. Therm. Eng. 125, 559–566 (2017)Google Scholar
  54. 54.
    Das, M., Sarkar, M., Datta, A., Santra, A.K.: An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends. Renew. Energy 119, 174–184 (2018)Google Scholar
  55. 55.
    Palash, S.M., Kalam, M.A., Masjuki, H.H., Masum, B.M., Sanjid, A.: Impacts of Jatropha biodiesel blends on engine performance and emission of a multi cylinder diesel engine. Proceedings of the International Conference on Future Trends in Structural, Civil, Environmental and Mechanical Engineering -- FTSCEM 2013 Copyright © Institute of Research Engineers and Doctors. All rights reserved. ISBN: 978-981-07-7021-1,
  56. 56.
    Padalkar, A.: Investigations on performance and emission characteristics of diesel engine with biodiesel (jatropha oil) and its blends. J. Renew. Energy. (2013). Google Scholar
  57. 57.
    Lapuerta, M., Armas, O., Rodriguez-Fernandez, J.: Effect of biodiesel fuels on diesel engine emissions. Progr. Energy Combust. Sci. 34, 198–223 (2008)Google Scholar
  58. 58.
    Pradhan, P., Raheman, H., Padhee, D.: Combustion and performance of a diesel engine with preheated Jatropha curcas oil using waste heat from exhaust gas. Fuel 115, 527–533 (2014)Google Scholar
  59. 59.
    Nalgundwar, A., Paul, B., Sharma, S.K.: Comparison of performance and emissions characteristics of DI CI engine fueled with dual biodiesel blends of palm and Jatropha. Fuel 173, 172–179 (2016)Google Scholar
  60. 60.
    Reksowardojo, I., Lubis, I., Manggala, W., Brodjonegoro, T., Soerawidjaja, T., Arismunandar, W.: Performance and exhaust gas emissions of using biodiesel fuel from physic nut (Jatropha curcas L.) oil on a direct injection diesel engine (DI). Training 2007, 11–19 (2013)Google Scholar
  61. 61.
    Chauhan, B.S., Kumar, N., Cho, H.M.: A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy 37, 616–622 (2012)Google Scholar
  62. 62.
    Monirul, I.M., Masjuki, H.H., Kalam, M.A., Mosarof, M.H., Zulkifli, N.W.M., Teoh, Y.H., How, H.G.: Assessment of performance, emission and combustion characteristics of palm, Jatropha and Calophyllum inophyllum biodiesel blends. Fuel 181, 985–995 (2016)Google Scholar
  63. 63.
    Dharma, S., Hassan, M.H., Ong, H.C., Sebayang, A.H., Silitonga, A.S., Kusumo, F., Milano, J.: Experimental study and prediction of the performance and exhaust emissions of mixed Jatropha curcas-Ceiba pentandra biodiesel blends in diesel engine using artificial neural networks. J. Clean. Prod. 164, 618–633 (2017)Google Scholar
  64. 64.
    Manickam, M., Kadambamattam, M., Abraham, M.: Combustion characteristics and optimization of neat biodiesel on high speed common rail diesel engine powered SUV. SAE Technical paper 2009-01-2786, 2009Google Scholar
  65. 65.
    Nayak, S.K., Pattanaik, B.P.: Experimental Investigation on performance and emission characteristics of a diesel engine fuelled with mahua biodiesel using additive. Energy Proced. 54, 569–579 (2014)Google Scholar
  66. 66.
    Yu, C.W., Bari, S., Ameen, A.A.: A comparison of combustion characteristics of waste cooking oil with diesels fuel in a direct injection diesel engine. Inst. Mech. Eng. D 216, 237–243 (2002)Google Scholar
  67. 67.
    Raheman, H., Ghadge, S.V.: Performance of compression ignition engine with Mahua (Madhuca indica) biodiesel. Fuel 86, 2568–2573 (2007)Google Scholar
  68. 68.
    Godiganur, S., Murthy, C.S., Reddy, R.P.: Performance and emission characteristics of a Kirloskar HA394 diesel engine operated on Mahua oil methyl ester. Thammasat Int. J. Sci. Technol. 15, 32–39 (2010)Google Scholar
  69. 69.
    Puhan, S., Vedaraman, N., Rambrahamam, B., Nagarajan, G.: Mahua (Madhuca indica) seed oil: a source of renewable energy in India. J. Sci. Ind. Res. 64, 890 (2005)Google Scholar
  70. 70.
    Saravanan, N., Nagarajan, G., Puhan, S.: Experimental investigation on a DI diesel engine fuelled with Madhuca indica ester and diesel blend. Biomass Bioenergy 34, 838–843 (2010)Google Scholar
  71. 71.
    Ali, O.M., Mamat, R., Faizal, C.K.M.: Palm biodiesel production, properties and fuel additives. Int. Rev. Mech. Eng. 6, 1573–1580 (2012)Google Scholar
  72. 72.
    Ali, O.M., Mamat, R., Abdullah, N.R., Abdullah, A.A.: Analysis of blended fuel properties and engine performance with palm biodiesel blended fuel. Renew. Energy 86, 59–67 (2016)Google Scholar
  73. 73.
    Nagaraja, S., Sooryaprakash, K., Sudhakaran, R.: Investigate the effect of compression ratio over the performance and emission characteristics of variable compression ratio engine fueled with preheated palm oil -diesel blends. Proced Earth Planet. Sci. 11, 393–401 (2015)Google Scholar
  74. 74.
    Hazar, H., Aydin, H.: Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)–diesel blends. Appl. Energy 87(3), 786–790 (2010)Google Scholar
  75. 75.
    Yilmaz, N., Morton, B.: Effects of preheating vegetable oils on the performance and emission characteristics of two diesel engines. Biomass Bioenergy 35(5), 2028–2033 (2010)Google Scholar
  76. 76.
    Kesari, V., Das, A., Rangan, L.: Physico-chemical characterization and antimicrobial activity from seed oil of Pongamia pinnata, a potential bio-fuel crop. Biomass Bioenergy 34, 108–115 (2010)Google Scholar
  77. 77.
    Sreevalli, M.N.: Propagation techniques, evaluation and improvement of the biodiesel plant, Pongamia pinnata (L.) Pierre—a review. Ind. Crops Prod. 31, 1–12 (2010)Google Scholar
  78. 78.
    Kamath, H.V., Regupathi, I., Saidutta, M.B.: Optimization of two step Pongamia biodiesel synthesis under microwave irradiation. Fuel Process. Technol. 92, 100–105 (2011)Google Scholar
  79. 79.
    Gopal, K.N., Karupparaj, R.T.: Effect of Pongamia biodiesel on emission and combustion characteristics of DI compression ignition engine. Ain Shams Eng. J. 6, 297–305 (2015)Google Scholar
  80. 80.
    Dorado, M.P., Ballesteros, E., Arnal, J.M., Gomez, J., Lopez, F.: Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel 82(11), 1311–1315 (2003)Google Scholar
  81. 81.
    Lapuerta, M., Agudelo, J.R., Rodriguez- Fernandez, J.: Diesel particulate emissions from used cooking oil biodiesel. Bioresour. Technol. 99(4), 731–740 (2008)Google Scholar
  82. 82.
    Dhar, A., Agarwal, A.K.: Performance, emissions and combustion characteristics of karanja biodiesel in a transportation engine. Fuel 119, 70–80 (2014)Google Scholar
  83. 83.
    Srivastava, P.K., Verma, M.: Methyl ester of karanja oil as an alternative renewable source energy. Fuel 87, 1673–1677 (2008)Google Scholar
  84. 84.
    Perumal, V., Ilangkumaran, M.: Experimental analysis of engine performance, combustion and emission using Pongamia biodiesel as fuel in CI engine. Energy 129, 228–236 (2017)Google Scholar
  85. 85.
    Lee, S., Lee, C.S., Park, S., Gupta, J.G., Maurya, R.K., Agarwal, A.K.: Spray characteristics, engine performance and emissions analysis for Karanja biodiesel and its blends. Energy 119, 138–151 (2017)Google Scholar
  86. 86.
    Bajpai, S., Sahoo, P.K., Das, L.M.: Feasibility of blending karanja vegetable oil in petro-diesel and utilization in a direct injection diesel engine. Fuel 88, 705–711 (2009)Google Scholar
  87. 87.
    Jindal, S., Nandwana, B.P., Rathore, N.S.: Comparative evaluation of combustion, performance, and emissions of jatropha methyl ester and karanj methyl ester in a direct injection diesel engine. Energy Fuels 24, 1565–1572 (2010)Google Scholar
  88. 88.
    Sivaramakrishnan, K.: Investigation on performance and emission characteristics of a variable compression multi fuel engine fuelled with Karanja biodiesel–diesel blend. Egypt. J. Petrol. (2017). Google Scholar
  89. 89.
    Roy, M.M., Wang, M., Bujold, J.: Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations. Appl. Energy 106, 198–208 (2013)Google Scholar
  90. 90.
    Ozturk, E.: Performance, emissions, combustion and injection characteristics of a diesel engine fuelled with canola oil–hazelnut soapstock Biodiesel mixture. Fuel Process. Technol. 129, 183–191 (2015)Google Scholar
  91. 91.
    Lesnik, L., Bilus, I.: The effect of rapeseed oil biodiesel fuel on combustion, performance, and the emission formation process within a heavy-duty DI diesel engine. Energy Convers. Manag. 109, 140–152 (2016)Google Scholar
  92. 92.
    Miri, S.M.R., Seyedi, S.R.M., Ghobadian, B.: Effects of biodiesel fuel synthesized from non-edible rapeseed oil on performance and emission variables of diesel engines. J. Clean. Prod. 142, 3798–3808 (2017)Google Scholar
  93. 93.
    Ekrem, B.: Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89(10), 3099–3105 (2010)Google Scholar
  94. 94.
    Mital, K.M.: Biogas system: principles and applications India, New Age International (P) Limited (1996)Google Scholar
  95. 95.
    Nijaguna, B.T.: Biogas technology, New Age International (P) Limited (2002)Google Scholar
  96. 96.
    Debabrata, B., Murugan, S.: Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode. Energy 72, 760–771 (2014)Google Scholar
  97. 97.
    Debabrata, B., Murugan, S.: Experimental investigation on the behavior of a DI diesel engine fueled with raw biogas-diesel dual fuel at different injection timing. J. Energy Inst. (2015). Google Scholar
  98. 98.
    Bari, S.: Effect of carbon dioxide on the performance of biogas/diesel dual-fuel engine. Renew Energy 9, 1007–1010 (1996)Google Scholar
  99. 99.
    Bedoya, I.D., Saxena, S., Cadavid, F.J., Dibble, R.J.: Exploring strategies for reducing high intake temperature requirements and allowing optimal operational conditions in a biogas fueled HCCI Engine for power generation. ASME J. Eng. Gas Turb. Power 134, 1–9 (2012)Google Scholar
  100. 100.
    Bora, B.J., Saha, U.K.: Experimental evaluation of a rice bran biodiesel e biogas run dual fuel diesel engine at varying compression ratios. Renew. Energy 87, 782–790 (2016)Google Scholar
  101. 101.
    Bora, B.J., Saha, U.K., Chatterjee, S., Veer, V.: Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. Energy Convers. Manag. 87, 1000–1009 (2014). Google Scholar
  102. 102.
    Bora, B.J., Saha, U.K.: Improving the performance of a biogas powered dual fuel diesel engine using emulsified rice bran biodiesel as pilot fuel through adjustment of compression ratio and injection timing, ASME J. Eng. Gas Turb. Power 137(9), 091505 (2015). Google Scholar
  103. 103.
    Barik, D., Murugan, S.: Effects of diethyl ether (DEE) injection on combustion performance and emission characteristics of Karanja methyl ester (KME)–biogas fueled dual fuel diesel engine. Fuel 164, 286–296 (2016)Google Scholar
  104. 104.
    Sudheesh, K., Mallikarjuna, J.M.: Diethyl ether as an ignition improver for biogas homogeneous charge compression ignition (HCCI) operation—an experimental investigation. Energy 35, 3614–3622 (2010)Google Scholar
  105. 105.
    Qi, D.H., Chen, H., Geng, L.M., Bian, Y.Z.: Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel–diesel blended fuel engine. Renew. Energy 36, 1252–1258 (2011)Google Scholar
  106. 106.
    Edwin, G.V., Nagarajan, G., Nagalingam, B.: Studies on improving the performance of rubber seed oil fuel for diesel engine with DEE port injection. Fuel 89, 3559–3567 (2010)Google Scholar
  107. 107.
    Sivalakshmi, S., Balusamy, T.: Effect of biodiesel and its blends with diethyl ether on the combustion, performance and emissions from a diesel engine. Fuel 106, 106–110 (2013)Google Scholar
  108. 108.
    Reed, T., Das, A.: Handbook of Biomass Downdraft Gasifier Engine Systems. Biomass Energy Foundation, Golden (1988)Google Scholar
  109. 109.
    Singh, H., Mohapatra, S.K.: Production of producer gas from sugarcane bagasse and carpentry waste and its sustainable use in a dual fuel CI engine: a performance, emission, and noise investigation. J. Energy Inst. 91, 43–54 (2018)Google Scholar
  110. 110.
    Dhole, A.E., Yarasu, R.B., Lata, D.B., Priyam, A.: Effect on performance and emissions of a dual fuel diesel engine using hydrogen and producer gas as secondary fuels. Int. J. Hydrogen Energy 39, 8087–8097 (2014)Google Scholar
  111. 111.
    Lal, S., Mohapatra, S.K.: The effect of compression ratio on the performance and emission characteristics of a dual fuel diesel engine using biomass derived producer gas. Appl. Therm. Eng. 119, 63–72 (2017)Google Scholar
  112. 112.
    Gad, M.S., et al.: Performance and emissions characteristics of C.I. engine fueled with palm oil/palm oil methyl ester blended with diesel fuel, Egypt. J. Petrol. (2017). Google Scholar
  113. 113.
    Mosarof, M.H., Kalam, M.A., Masjuki, H.H., Ashraful, A.M., Rashed, M.M., Imdadul, H.K., Monirul, I.M.: Implementation of palm biodiesel based on economic aspects, performance, emission, and wear characteristics. Energy Convers. Manag. 105, 617–629 (2015)Google Scholar
  114. 114.
    Daho, T., Vaitilingom, G., Ouiminga, S.K., Piriou, B., Zongo, A.S., Ouoba, S., et al.: Influence of engine load and fuel droplet size on performance of a CI engine fueled with cottonseed oil and its blends with diesel fuel. Appl. Energy 111, 1046–1053 (2013)Google Scholar
  115. 115.
    Korakianitis, T., Namasivayam, A.M., Crookes, R.J.: Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Progr. Energy Combust. Sci. 37, 89–112 (2011)Google Scholar
  116. 116.
    Gimelli, A., Cascone, C., Pennacchia, O., Unich, A., Capaldi, P.: Performance and Emissions of a Natural Gas Fueled Two-Stroke SI Engine, SAE International, SAE Technical Paper Series, 2008-01-0318, 2008Google Scholar
  117. 117.
    Gou, M., Detuncq, B., Guernier, C., Germain, P.S.: Performance of a single cylinder engine fuelled by a mixture of natural gas and gasoline. SAE International, 900585, (1990)Google Scholar
  118. 118.
    Tahir, M.M., Ali, M.S., Salim, M.A., Bakar, R.A., Fudhail, A.M., Hassan, M.Z., Abdul, M.M.S.: Performance analysis of a spark ignition engine using compressed natural gas (CNG) as fuel. Energy Proced. 68, 355–362 (2015)Google Scholar
  119. 119.
    Hosmath, R.S., Banapurmath, N.R., Khandal, S.V., Gaitonde, V.N., Basavarajappa, Y.H., Yaliwal, V.S.: Effect of compression ratio, CNG flow rate and injection timing on the performance of dual fuel engine operated on honge oil methyl ester. Renew. Energy 93, 579–590 (2016)Google Scholar
  120. 120.
    Bose, P.K., Maji, D.: An experimental investigation on engine performance and emissions of a single cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation. Int J Hydrogen Energy 34, 4847–4854 (2009)Google Scholar
  121. 121.
    Yoon, S.H., Han, S.C.: Effects of high EGR rate on dimethyl ether (DME) combustion and pollutant emission characteristics in a direct injection diesel engine. Energies 6, 5157–5167 (2013)Google Scholar
  122. 122.
    Al-Baghdadi, M.A.R.S.: Effect of compression ratio, equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel. Renew. Energy 29, 2245–2260 (2004)Google Scholar
  123. 123.
    Sastri, M.V.C.: Hydrogen energy research-and-development in India e an overview. Int. J. Hydrogen Energy 12, 137–145 (1987)Google Scholar
  124. 124.
    Verhelst, S., Sierens, R.: Hydrogen engine-specific properties. Int. J. Hydrogen Energy 26, 987–990 (2001)Google Scholar
  125. 125.
    Sierens, R., Verhelst, S.: Hydrogen fuelled V-8 engine for city bus application. Int. J. Hydrogen Energy 2, 39–45 (2001)Google Scholar
  126. 126.
    Mohammadi, A., Shioji, M., Yasuyuki, N., Ishikura, W., Eizo, T.: Performance and combustion characteristics of a direct injection SI hydrogen engine. Int. J. Hydrogen Energy 32, 296–304 (2007)Google Scholar
  127. 127.
    Deb, M., Sastry, G.R.K., Bose, P.K., Banerjee, R.: An experimental study on combustion, performance and emission analysis of a single cylinder, 4-stroke DI-diesel engine using hydrogen in dual fuel mode of operation. Int. J. Hydrogen Energy 4 0, 8586–8598 (2015)Google Scholar
  128. 128.
    Yadav, V.S., Sharma, D., Soni, S.L.: Performance and combustion analysis of hydrogen-fuelled C.I. engine with EGR. Int. J. Hydrogen Energy 40, 4382–4391 (2015)Google Scholar
  129. 129.
    Zhou, J.H., Cheung, C.S., Leung, C.W.: Combustion, performance, regulated and unregulated emissions of a diesel engine with hydrogen addition. Appl. Energy 126, 1–12 (2014)Google Scholar
  130. 130.
    Kose, H., Ciniviz, M.: An experimental investigation of effect on diesel engine performance and exhaust emissions of addition at dual fuel mode of hydrogen. Fuel Process. Technol. 114, 26–34 (2013)Google Scholar
  131. 131.
    Lapuerta, M., Armas, O., Rodríguez-Fernández, J.: Effect of biodiesel fuels on diesel engine emissions. Prog. Energy Combust. Sci. 34, 198–223 (2008). Google Scholar
  132. 132.
    Benjumea, P., Agudelo, J.R., Agudelo, A.F.: Effect of the degree of unsaturation of biodiesel fuels on engine performance, combustion characteristics, and emissions. Energy Fuel. 25, 77–85 (2011). Google Scholar
  133. 133.
    Macor, A., Avella, F., Faedo, D.: Effects of 30% v/v biodiesel/diesel fuel blend on regulated and unregulated pollutant emissions from diesel engines. Appl. Energy 88, 4989–5001 (2011). Google Scholar
  134. 134.
    Omidvarborna, H., Kumar, A., Kim, D.S., Venkata, P.K.P., Bollineni, V.S.P.: Characterization and exhaust emission analysis of biodiesel in different temperature and pressure: laboratory study. J. Hazard. Tox. Radioact. Waste 19, 04014030. (2015). Google Scholar
  135. 135.
    Kegl, B.: Influence of biodiesel on engine combustion and emission characteristics. Appl. Energy. 88, 1803–1812 (2011). Google Scholar
  136. 136.
    Tree, D.R., Svensson, K.I.. Proc. Combust. Inst. 33: (2007) 272–309Google Scholar
  137. 137.
    Glassman, I.. Symp. (Int.) Combust. 22: (1989) 295–311Google Scholar
  138. 138.
    Lighty, J.S., Veranth, J.M., Sarofim, A.F.: J. Air Waste Manag. Assoc. 50, 1565–1618 (2000)Google Scholar
  139. 139.
    Muzyka, V., Veimer, S., Schmidt, N.: Sci. Total Environ. 217, 103–111 (1998)Google Scholar
  140. 140.
    Broday, D.M., Rosenzweig, R.: J. Aerosol Sci. 42, 372–386 (2011)Google Scholar
  141. 141.
    Zhang, R., Khalizov, A.F., Pagels, J., Zhang, D., Xue, H., McMurry, P.H.: Proc. Natl. Acad. Sci. USA 105(2008) 10291–10296Google Scholar
  142. 142.
    Tallaa, L.B., Baan, R.A., Grosse, Y., Secretan, B.L., Ghissassi, F.E., Bouvard, V., Guha, N., Loomis, D., Straif, K., Arlt, V.M.: Lancet Oncol. 13, 663–664 (2012)Google Scholar
  143. 143.
    Dockery, D.W.: Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ. Health Perspect. 109, 483–486 (2001)Google Scholar
  144. 144.
    Jacobson, M.Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosol. Nature 409, 695–697 (2001)Google Scholar
  145. 145.
    Kennedy, I.M.: Models of soot formation and oxidation. Progr. Energy Combust 23, 95–132 (1997)Google Scholar
  146. 146.
    Frank, B., Schlögl, R., Su, D.S.: Diesel soot toxification. Environ. Sci. Technol. 47, 3026–3027 (2013)Google Scholar
  147. 147.
    Su, D.S., Serafino, A., Muller, J.O., Jentoft, R.E., Schlogl, R.: Fiorito, S.: Cytotoxicity and inflammatory potential of soot particles of low-emission diesel engines. Environ. Sci. Technol. 42, 1761–1765 (2008)Google Scholar
  148. 148.
    Koch, D., Bond, T.C., Streets, D., Unger, N., van der Werf, G.R.: Global impacts of aerosols from particular source regions and sectors. J. Geophys. Res. 112(D02205), 24 (2007)Google Scholar
  149. 149.
    Palmer, H.B., Cullis, C.F.: The formation of carbon from gases. In: Walker, P. L. (ed.) Chemistry and Physics of Carbon, vol. 1, pp. 265–325. Marcel Dekker, New York (1965)Google Scholar
  150. 150.
    Lima, A.L.C., Farrington, J.W., Reddy, C.M.: Combustion-Derived polycyclic aromatic hydrocarbons in the environment—a review. Environ. Forensics 6, 109–131 (2005). Google Scholar
  151. 151.
    Donaldson, K., Tran, L., Jimenez, L.A., Duffin, R., Newby, D.E., Mills, N., MacNee, W., Stone, V.: Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part. Fibre Toxicol. 2, 10 (2005)Google Scholar
  152. 152.
    Reuter, S., Gupta, S.C., Chaturvedi, M.M., Aggarwal, B.B.: Oxidative stress, inflammation, and cancer how are they linked? Free Radic. Biol. Med. 49, 1603–1616 (2010)Google Scholar
  153. 153.
    Xiao, G.G., Wang, M., Li, N., Loo, J.A., Nel, A.E.: Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J. Biol. Chem. 278, 50781–50790 (2003)Google Scholar
  154. 154.
    Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Kaz, I., Thurston, G.D.: Lung cancer, cardiopulmonary mortality, and long term exposure to fine particulate air pollution. J. Am. Med. Assoc. 287, 1132–1141 (2002)Google Scholar
  155. 155.
    EPA: National ambient air quality standards for particulate matter: final rule. Fed. Reg. 71, 61144–61233 (2006)Google Scholar
  156. 156.
    Brunekreef, B., Beelen, R., Hoek, G., Schouten, L., Goldbohm, S.B., Fischer, P., Armstrong, B., Hughes, E., Jerrett, M., van den Brandt, P.: Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. HEI Research Report, vol. 139, Health Effects Institute, Boston (2009)Google Scholar
  157. 157.
    Smith, K.R., Mehta, S., Maeusezahl-Feuz, M.: Indoor Smoke from Household Solid Fuels. Comparative Quantification of Health Risks. Chapter 18. In: Ezzati, M., Rodgers, A.D., Lopez A.D., Murray, C.J. L. (eds.) Global and Regional Burden of Disease due to Selected Major Risk Factors. vol.2, pp. 1437–1495. World Health Organization, Geneva (2004)Google Scholar
  158. 158.
    Naeher, L.P., Brauer, M., Lipsett, M., Zelikoff, J.T., Simpson, C.D., Koenig, J.Q., Smith, K.R.: Woodsmoke health effects: a review. Inhal. Toxicol. 19, 67–106 (2007)Google Scholar
  159. 159.
    Prasad, R., Bella, V.R.: A review on diesel soot emission, its effect and control. Bull. Chem. Reac. Eng. Catal. 5(2), 69–86 (2010).
  160. 160.
    Cohen, A.J., Anderson, H.R., Ostro, B., Pandey, K.D., Krzyzanowski, M., Kuenzli, N., Gutschmidt, K., Pope, C.A., Romieu, I., Samet, J.M., Smith, K.R.: Mortality impacts of urban air pollution, chapter 17 In: Ezzati, M., Rodgers, A.D., Lopez, A.D., Murray, C.J.L. (eds.) Global and Regional Burden of Disease due to Selected Major Risk Factors, vol.2, pp. 1437–1495. World Health Organization, Geneva (2004)Google Scholar
  161. 161.
    Song, X., Shao, L., Yang, S., Song, R., Sun, L., Cen, S.: Trace elements pollution and toxicity of airborne PM10 in a coal industrial city. Atmos. Pollut. Res. 6, 469–475 (2015)Google Scholar
  162. 162.
    Adamson, I.Y.R., Vincent, R., Bjarnason, S.G.: Cell injury and Interstitial inflammation in rat lung after inhalation of ozone and urban particulates. Am. J. Respir. Cell Mol. Biol. 20, 1067 1072 (1999)Google Scholar
  163. 163.
    Elder, A.C.P., Gelein, R., Finkelstein, J.N., Cox, C., Oberdorster, G.: Pulmonary inflammatory response to inhaled ultrafine particles is Modified by age, ozone exposure, and bacterial toxin. Inhal. Toxicol. 12, 227 246 (2000)Google Scholar
  164. 164.
    Xue-Jin, Y., Shafer, R., Ma Jane, Y.C., Antonini, J.M., Weissman, D.D., Siegel, P.D., Barger, M.W., Roberts, J.R., MaJoseph, K.H.: Alteration of pulmonary immunity to Listeria monocyto-genes by diesel exhaust particles (DEPs). Environ. Health Perspect. 110, 11–23 (2002)Google Scholar
  165. 165.
    Chameides, W.L., Yu, H., Liu, S.C., Bergin, M., Zhou, X., Mearns, L., Wang, G., Kiang, C.S., Saylor, R.D., Luo, C.: Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls? Proc. Natl. Acad. Sci. 96, 13626–13633 (1999)Google Scholar
  166. 166.
    Auffhammer, M., Ramanathan, V., Vincent, J.R.: Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India. Proc. Natl. Acad. Sci. 103, 19668–19672 (2006)Google Scholar
  167. 167.
    Grantza, D.A., Garnerb, J.H.B., Johnsonc, D.W.: Ecological effects of particulate matter. Environ. Int. 29, 213–239 (2003)Google Scholar
  168. 168.
    Arimoto, R.: Atmospheric deposition of chemical contaminants to the great lakes. J. Great Lakes Res. 15, 339–356 (1989)Google Scholar
  169. 169.
    Schroder, J., Eelsch-Pausch, K., McLachlan, M.S.: Measurement of atmospheric deposition of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) to a soil. Atmos. Environ. 31, 2983–2989 (1997)Google Scholar
  170. 170.
    Davis, C.A.: Annual progress report water quality, air quality and forest health-research, monitoring, and modeling, University of California (2000)Google Scholar
  171. 171.
    Miller, E.K., Panek, J.A., Friedland, A.J., Kadlecek, J.A.: Mohnen, V.A.: Atmospheric deposition to a high- elevation forest at whiteface mountain, New York, USA. Tellus B 45B(3), 209–227 (1993)Google Scholar
  172. 172.
    Simcik, M.E., Eisenreich, S.J., Golden, K.A., Liu, S.P., Lipiatou, E., Swachhamer, D.L., Long, D.T.: Atmospheric loading of polycyclic aromatic hydrocarbons to lake Michigan as recorded in the sediments. Environ. Sci. Technol. 30, 3039–3046 (1996)Google Scholar
  173. 173.
    Wik, M., Renberg, I.: Recent atmospheric deposition in sweden of carbonaceous particles from fossil- fuel combustion surveyed using lake sediments. Ambio 20, 289–292 (1991)Google Scholar
  174. 174.
    Zhang, R., Khalizov, A.F., Pagels, J., Zhang, D., Xue, H., McMurry, P.H.: Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc. Natl. Acad. Sci. (2008). Google Scholar
  175. 175.
    Trijonis, J.: Impact of light duty diesels on visibility in California. J. Air Pollut. Control Assoc. 32(10), 1048–1053 (1982). Google Scholar
  176. 176.
    Singh, A., Dey, S.: Influence of aerosol composition on visibility in megacity Delhi. Atmos. Environ. 62, 367–373 (2012)Google Scholar
  177. 177.
    Bachmann, J.: Black Carbon a Science and Policy Primer. Pew Center on Global Climate Change, Arlington (2009)Google Scholar
  178. 178.
    El-Fadel, M., Hashisho, Z.: Vehicular emissions and air quality in roadway tunnels. Transport. Res. D 5, 355–372 (2000)Google Scholar
  179. 179.
    Riederer, J.: Pollution damage to works of art. Experientia 20, 73–85 (1974)Google Scholar
  180. 180.
    Lodge, J.P.: Methods of Air Sampling and Analysis, p. 191 CRC Press, Boca Raton (1988)Google Scholar
  181. 181.
    Bandurkar, N.G., Parate, S.S., Kalkuntalwar, R.R., Husain, A.S.Z.: A review paper on diesel particulate filter, Int. J. Eng. Appl. Technol. 2321–8134Google Scholar
  182. 182.
    Spellman, F.R., Nancy, E.: Whiting, Handbook of Mathematics and Statistics for the Environment, p. 529. CRC Press, Boca Raton (2013)Google Scholar
  183. 183.
    Salam, M.A., Dennis, J.H.: Review of aerosol sampling methods and introduction of a new low cost aerosol sampler. J. Aerosol Med. 19, 434–455 (2006)Google Scholar
  184. 184.
    Thayer, D., Koehler, K.A., Marchese, A., Volckens, J., Personal, A.: Thermophoretic sampler for airborne nanoparticles. Aerosol Sci. Technol. 45, 734–740 (2011)Google Scholar
  185. 185.
  186. 186.
    Omidvarborna, H., Kumar, A., Kim, D.S.: Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber. Sci. Total Environ. 544, 450–459 (2016)Google Scholar
  187. 187.
    Omidvarborna, H., Kumar, A., Kim, D.S.: Recent studies on soot modeling for diesel combustion. Renew. Sustain. Energ. Rev. 48, 635–647 (2015). Google Scholar
  188. 188.
    Xue, J., Grift, T.E., Hansen, A.C.: Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 15, 1098–1116 (2011). Google Scholar
  189. 189.
    Zhang, R., Kook, S.: Structural evolution of soot particles during diesel combustion in a single-cylinder light-duty engine. Combust. Flame 162, 2720–2728 (2015)Google Scholar
  190. 190.
    Merchant, W.M., Sanmiguel, S.G., McCollam, S.: Analysis of soot particles derived from biodiesels and diesel fuel air-flames. Fuel 102, 525–535 (2012)Google Scholar
  191. 191.
    Hakim, I., Suryawan, B., D Kartika, I.M., Putra, N., Wibowo, C.S.: Characterization of thermal precipitator in smoke collector by using particle counter. Sci. Contrib. Oil Gas 35, 1–10 (2012)Google Scholar
  192. 192.
    Meyer, M.: Design of a Thermal Precipitator for the Characterization of Smoke Particles from Common Spacecraft Materials, National Aeronautics and Space Administration, Glenn Research Center, ClevelandGoogle Scholar
  193. 193.
    Wen, J., Wexler, A.S.: Thermophoretic sampler and its application in ultrafine particle collection. Aerosol Sci. Technol. 41(6), 624–629 (2007)Google Scholar
  194. 194.
    Maynard, A.D.: The development of a new thermophoretic precipitator for scanning-transmission electron-microscope analysis of ultrafine aerosol-particles. Aerosol Sci. Technol. 23, 521–533 (1995)Google Scholar
  195. 195.
    Lorenzo, R., Kaegi, R., Scherrer, G.L., Grobety, B., Burtscher, H.: A thermophoretic precipitator for the representative collection of atmospheric ultrafine particles for microscopic analysis. Aerosol Sci. Technol. 41(10), 934–943 (2007)Google Scholar
  196. 196.
    Nkwenti, A.W., Christof, A., Burkhard, S., Heinz, F., Heinz, K., Sabine, P., Thomas, A.J.K.: Optimisation of a thermophoretic personal sampler for nanoparticle exposure studies. J. Nanopart. Res. 11, 1611–1624 (2009)Google Scholar
  197. 197.
    Thayer, D., Koehler, A.,Volckens, J.A., Personal: Thermophoretic sampler for airborne nanoparticles. Aerosol Sci. Technol. 45, 744–750 (2011)Google Scholar
  198. 198.
    Wang, B., Ou, Q., Tao, S., Chen, D.R.: Performance study of a disk to disk thermal precipitator. J. Aerosol Sci. 52, 45–56 (2012)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rishikesh Kumar Singh
    • 1
  • Arnab Sarkar
    • 1
  • Jyoti Prasad Chakraborty
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology (BHU)VaranasiIndia
  2. 2.Department of Chemical EngineeringIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations