Waste and Biomass Valorization

, Volume 10, Issue 10, pp 2773–2781 | Cite as

Optimizing a Low-Cost Production Process of Crude Fucoidanase by Dendryphiella arenaria Utilizing Cystoseira trinodis (Phaeophyceae) and Enzymatic Hydrolysis of the Brown Algal Biomass

  • Awatief F. Hifney
  • Mohamed GomaaEmail author
  • Mustafa A. Fawzy
  • Khayria M. Abdel-Gawad
Original Paper


Fucoidanase is a promising biocatalyst for several biotechnological applications. Crude fucoidanase production by Dendryphiella arenaria was optimized using a natural low-cost medium composed of Cystoseira trinodis and natural seawater. The results showed that seaweed biomass concentration and incubation period were the most significant factors affecting fucoidanase production. At the optimized conditions [seaweed biomass (4.25% w/v), seawater concentration (100% v/v), and incubation period (2 days)], the fucoidanase production was 3.43 U/mL. The crude fucoidanase exhibited a wide pH (3–9) stability with residual activity > 58%. The enzyme showed a good thermostability at 40 and 50 °C with half-lives of 239.02 and 115.52 min, respectively. Several parameters of thermal inactivation kinetics and thermodynamics were calculated, and suggested that the enzyme would be thermostable. Additionally, enzymatic extract containing fucoidanase was used for the enzymatic saccharification of the brown algal biomass in terms of seaweed particle size, solid/liquid ratio, and enzyme dosage. The maximum reducing sugars obtained was 57.11 mg/g. To the best of our knowledge, this is the first report regarding fungal fucoidanase optimization mediated saccharification of a brown seaweed.


Box–Behnken design Fucoidan Fermentable sugars Thermostability Thermodynamics 


  1. 1.
    Hifney, A.F., Fawzy, M.A., Abdel-Gawad, K.M., Gomaa, M.: Industrial optimization of fucoidan extraction from Sargassum sp. and its potential antioxidant and emulsifying activities. Food Hydrocoll. 54, 77–88 (2016)CrossRefGoogle Scholar
  2. 2.
    Kusaykin, M.I., Silchenko, A.S., Zakharenko, A.M., Zvyagintseva, T.N.: Fucoidanases. Glycobiology 26, 3–12 (2015)Google Scholar
  3. 3.
    Wu, Q., Zhang, M., Wu, K., Liu, B., Cai, J., Pan, R.: Purification and characteristics of fucoidanase obtained from Dendryphiella arenaria TM94. J. Appl. Phycol. 23, 197–203 (2010)CrossRefGoogle Scholar
  4. 4.
    Gurpilhares, D.D.B., Moreira, T.R., Bueno, J.D.L., Cinelli, L.P., Mazzola, P.G., Pessoa, A., Sette, L.D.: Algae’s sulfated polysaccharides modifications: potential use of microbial enzymes. Process Biochem. 51, 989–998 (2016)CrossRefGoogle Scholar
  5. 5.
    Rodríguez-Jasso, R.M., Mussatto, S.I., Sepúlveda, L., Agrasar, A.T., Pastrana, L., Aguilar, C.N., Teixeira, J.A.: Fungal fucoidanase production by solid-state fermentation in a rotating drum bioreactor using algal biomass as substrate. Food Bioprod. Process. 91, 587–594 (2013)CrossRefGoogle Scholar
  6. 6.
    Silchenko, A.S., Kusaykin, M.I., Zakharenko, A.M., Menshova, R.V., Khanh, H.H.N., Dmitrenok, P.S., Isakov, V.V., Zvyagintseva, T.N.: Endo-1,4-fucoidanase from Vietnamese marine mollusk Lambis sp. which producing sulphated fucooligosaccharides. J. Mol. Catal. B 102, 154–160 (2014)CrossRefGoogle Scholar
  7. 7.
    Silchenko, A., Kusaykin, M., Kurilenko, V., Zakharenko, A., Isakov, V., Zaporozhets, T., Gazha, A., Zvyagintseva, T.: Hydrolysis of fucoidan by fucoidanase isolated from the marine bacterium, Formosa algae. Mar. Drugs 11, 2413–2430 (2013)CrossRefGoogle Scholar
  8. 8.
    Qianqian, W., Shuang, M., Hourong, X., Min, Z., Jingmin, C.: Purification and the secondary structure of fucoidanase from Fusarium sp. LD8. Evid. Based Complement. Alternat. Med. 2011, 1–8 (2011)CrossRefGoogle Scholar
  9. 9.
    Saqib, A.A., Hassan, M., Khan, N.F., Baig, S.: Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochem. 45, 641–646 (2010)CrossRefGoogle Scholar
  10. 10.
    Gomaa, M., Hifney, A.F., Fawzy, M.A., Issa, A.A., Abdel-Gawad, K.M.: Biodegradation of Palisada perforata (Rhodophyceae) and Sargassum sp. (Phaeophyceae) biomass by crude enzyme preparations from algicolous fungi. J. Appl. Phycol. 27, 2395–2404 (2015)CrossRefGoogle Scholar
  11. 11.
    Han, W., Lam, W.C., Melikoglu, M., Wong, M.T., Leung, H.T., Ng, C.L., Yan, P., Yeung, S.Y., Lin, C.S.K.: Kinetic analysis of a crude enzyme extract produced via solid state fermentation of bakery waste. ACS Sustain. Chem. Eng. 3, 2043–2048 (2015)CrossRefGoogle Scholar
  12. 12.
    Abdel-Gawad, K.M., Hifney, A.F., Issa, A.A., Gomaa, M.: Spatio-temporal, environmental factors, and host identity shape culturable-epibiotic fungi of seaweeds in the Red Sea Egypt. Hydrobiologia 740, 37–49 (2014)CrossRefGoogle Scholar
  13. 13.
    Hifney, A.F., Fawzy, M.A., Abdel-Gawad, K.M., Issa, A.A., Gomaa, M.: In vitro comparative evaluation of antioxidant activity of hydrophobic and hydrophilic extracts from algicolous fungi. J. Aquat. Food Prod. Technol. 26, 124–131 (2017)CrossRefGoogle Scholar
  14. 14.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  15. 15.
    Marín, E., Sanchez, L., Perez, M., Puyol, P., Calvo, M.: Effect of heat treatment on bovine lactoperoxidase activity in skim milk: kinetic and thermodynamic analysis. J. Food Sci. 68, 89–93 (2003)CrossRefGoogle Scholar
  16. 16.
    Pal, A., Khanum, F.: Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Process Biochem. 46, 1315–1322 (2011)CrossRefGoogle Scholar
  17. 17.
    Mohapatra, B.R.: Kinetic and thermodynamic properties of alginate lyase and cellulase co-produced by Exiguobacterium species Alg-S5. Int. J. Biol. Macromol. 98, 103–110 (2017)CrossRefGoogle Scholar
  18. 18.
    Kusaykin, M., Bakunina, I., Sova, V., Ermakova, S., Kuznetsova, T., Besednova, N., Zaporozhets, T., Zvyagintseva, T.: Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol. J. 3, 904–915 (2008)CrossRefGoogle Scholar
  19. 19.
    Abdel-Gawad, K.M., Hifney, A.F., Fawzy, M.A., Gomaa, M.: Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll. 63, 593–601 (2017)CrossRefGoogle Scholar
  20. 20.
    Silchenko, A.S., Imbs, T.I., Zvyagintseva, T.N., Fedoreyev, S.A., Ermakova, S.P.: Brown alga metabolites—inhibitors of marine organism fucoidan hydrolases. Chem. Nat. Compd. 53, 345–350 (2017)CrossRefGoogle Scholar
  21. 21.
    Fawzy, M.A., Gomaa, M., Hifney, A.F., Abdel-Gawad, K.M.: Optimization of alginate alkaline extraction technology from Sargassum latifolium and its potential antioxidant and emulsifying properties. Carbohydr. Polym. 157, 1903–1912 (2017)CrossRefGoogle Scholar
  22. 22.
    Daniel, R.: The upper limits of enzyme thermal stability. Enzyme Microb. Technol. 19, 74–79 (1996)CrossRefGoogle Scholar
  23. 23.
    Ravanal, M.C.A.D.C., Pezoa-Conte, R., Schoultz, S.V., Hemming, J., Salazar, O., Anugwom, I., Jogunola, O., Mäki-Arvela, P., Willför, S., Mikkola, J.-P., Lienqueo, M.E.: Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal Res. 13, 141–147 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Botany and Microbiology Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations