Waste and Biomass Valorization

, Volume 10, Issue 10, pp 2915–2923 | Cite as

Chitinase Production by Trichoderma harzianum Grown on a Chitin-Rich Mushroom Byproduct Formulated Medium

  • Anabell del Rocío Urbina-Salazar
  • Alberto Renato Inca-Torres
  • Gonzalo Falcón-García
  • Pilar Carbonero-Aguilar
  • Bruno Rodríguez-Morgado
  • José A. del Campo
  • Juan Parrado
  • Juan BautistaEmail author
Original Paper



The aim of this work was to evaluate the use of chitin-rich mushroom (Agaricus bisporus) by-products chitin/glucan enriched fraction (M-Ch/G-F) as main carbon source for the production of chitinases by three different microorganisms (Trichoderma harzianum, Trichoderma atroviride and Bacillus licheniformis), in an attempt to obtain these enzymes using a cheap and abundant fermentation medium.


Microorganisms were grown in submerged fermentation using different media formulated with chitin powder (Chp), colloidal chitin (Chc) and M-Ch/G-F as the main carbon source, respectively. Enzyme productivity and secretion (secretome) was studied by electrophoretic and proteomic methods.


All microorganisms produced higher chitinase activity in a medium formulated with M-Ch/G-F as a carbon source compared to medium formulated with Chp or CHc. T. harzianum showed the highest chitinase productivity (261.5 mU L−1 per day). Chitinase production was monitored by electrophoretic and proteomic methods. Electrophoretic method allowed the detection of 28 different proteins—three different chitinases with 82, 50 and 31 kDa. Proteomic analysis could identify 161 different proteins: 60 of them hydrolases, and 80% having glycolytic activity—5 of them were chitinases. These results show that cultivation of T. harzianum in a cheap and abundant fermentation medium represents a good procedure for large scale production of chitinases.


Our results show that cultivation of T. harzianum in a culture medium formulated with M-Ch/G-F, a cheap and abundant fermentation medium, is a good procedure for large scale production of glycosidases, particularly chitinases within a relatively short cultivation period of 6 days.

Graphical Abstract


Chitin-rich mushroom byproduct Trichoderma harzianum Bacillus licheniformis Agaricus bisporus Chitinase 



Mushroom chitin/glucan enriched fraction


Minimal medium




Chitin powder


Colloidal chitin


Potato dextrose broth



We are grateful to the Spanish Ministry of Science and Innovation for the financial support of this work (Project RTC-2015-4039-2), which has partial financial support from the FEDER funds of the European Union. J.A. del Campo was supported by Nicolás Monardes Program from Servicio Andaluz de Salud (SAS). The authors thank Paula Bautista for assistance in the preparation of the manuscript.


  1. 1.
    Shaikh, S.A., Deshpande, M.V.: Chitinolytic enzymes: their contribution to basic and applied research. World J. Microbiol. Biotechnol. 9, 468–475 (1993). CrossRefGoogle Scholar
  2. 2.
    Barboza-Corona, J.E., Reyes-Rios, D.M., Salcedo-Hernández, R., Bideshi, D.K.: Molecular and biochemical characterization of an endoquitinase (ChiA-HD73) from Bacillus thuringiensis subsp. Kurstaki HD-73. Mol. Biotechnol. 39, 27–29 (2008). CrossRefGoogle Scholar
  3. 3.
    Tsujibo, H., Orikoshi, H., Shiotani, K., Hayashi, M., Umeda, J., Miyamoto, K., Imada, C., Okami, Y., Inamori, Y.: Characterization of chitinase C from marine bacterium Alteromonas sp. strain 0-7, and its corresponding gene and domain structure. Appl. Environ. Microbiol. 64, 472–478 (1998)Google Scholar
  4. 4.
    Fortuna-González, J.M.: Caracterización bioquímica y molecular de quitinasas en cepas mexicanas de B. thuringiensis. Doctoral thesis. Instituto Politécnico Nacional. Ciudad de México, México, (2010)Google Scholar
  5. 5.
    Sastoque, C.: Aislamiento y selección de microorganismos productores de quitinasas a partir de residuos de concha de camarón con potencial biocontrolador. Tesis para optar el título de microbiólogo industrial, agrícola y veterinario. Pontificia Universidad Javeriana. Bogotá, Colombia (2005)Google Scholar
  6. 6.
    Sahai, A.S., Manocha, M.S.: Chitinases of fungi and plants: Their involvement in morphogenesis and host-parasite interaction. Microbiol. 11, 317–338 (1993). Google Scholar
  7. 7.
    Gessesse, A.: The use of Nug meal as a low cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresour. Technol. 62, 59–61 (1997). CrossRefGoogle Scholar
  8. 8.
    Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G.: Bergey’s Manual of Sytematic Bacteriology. vol. 2. Williams & Wilkins, Baltimore (1986)Google Scholar
  9. 9.
    Schallmey, M., Singh, A., Ward, O.P.: Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50, 1–17 (2004). CrossRefGoogle Scholar
  10. 10.
    Ramírez, M.G., Avelizapa, L.I., Avelizapa, N.G.R., Camarillo, R.C.: Colloidal chitin stained with Remazol Brilliant Blue R, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. J. Microbiol. Methods 56, 213–219 (2004). CrossRefGoogle Scholar
  11. 11.
    Bautista, J.: CHAMPI-D. Project RTC-2015-4039-2 (2015)Google Scholar
  12. 12.
    Görs, S., Schumann, R., Häubner, N., Karsten, U.: Fungal and algal biomass in biofilms on artificial surfaces quantified by ergosterol and chlorophyll a as biomarkers. Int. Biodeterior. Biodegradation 60, 50–59 (2007). CrossRefGoogle Scholar
  13. 13.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  14. 14.
    Bradford, M.M.: A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). CrossRefGoogle Scholar
  15. 15.
    Yamabhai, M., Emrat, S., Sukasem, S., Pesatcha, P., Jaruseranee, N., Buranabanyat, B.: Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. Biotechnol. J. 133, 50–57 (2008) CrossRefGoogle Scholar
  16. 16.
    Carbonero-Aguilar, P. Estudio de la oxidación de proteínas en ratas con encefalopatía hepática: una aproximación Proteómica. Doctoral thesis. Universidad de Sevilla. Sevilla, Spain (2012)Google Scholar
  17. 17.
    Craig, R., Beavis, R.C.: A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun. Mass Spectrom. 17, 2310–2316 (2003). CrossRefGoogle Scholar
  18. 18.
    Nesvizhskii, A.I., Keller, A., Kolker, E., Aebersold, R.: A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003). CrossRefGoogle Scholar
  19. 19.
    de Lima, F.B., Félix, C., Osório, N., Vitorino, A.A., Domingues, P., Correia, A., da Silva-Ribeiro, R.T., Esteves, A.C.: Secretome analysis of Trichoderma atroviride T17 biocontrol of Guignardia citricarpa. Biocontrol Sci. 99, 38–46 (2016). Google Scholar
  20. 20.
    Giese, E.,C., Corradi da Silva, M.I., Barbosa, A.M.: Fungal glucanase: production and application of β-1, 3 and β-1, 6-glucanases. Rev. Biotechnol. Cienc. Desenvol. 30, 97–104 (2003)Google Scholar
  21. 21.
    Mohamed, H.A.A., Wafaa, M.H., Attallah, A.G.: Genetic enhancement of Trichoderma viride to over produce different hydrolytic enzymes and their biocontrol potentially against root rot and white mold diseases in plants. Agric. Biol. J. N. Am. 1, 273–284 (2010)CrossRefGoogle Scholar
  22. 22.
    Latgé, J.P.: Tasting the fungal cell wall. Cell. Microbiol. 12, 863–872 (2010). CrossRefGoogle Scholar
  23. 23.
    Rana, I.A., Loerz, H., Schaefer, W., Becker, D.: Over expression of chitinase and chitosanase genes from Trichoderma harzianum under constitutive and induced promoters in order to increase disease resistance in wheat (Triticum aestivium). Mol. Plant Breed. 3, 37–49 (2012). Google Scholar
  24. 24.
    Gajera, H.P., Vakharia, D.N.: Production of lytic enzymes by Trichoderma isolated during in vitro antagonism with Aspergilus niger, the causal agent of collar rot of peanut. Braz. J. Microbiol. 43, 43–52 (2012). CrossRefGoogle Scholar
  25. 25.
    Kubicek, C.P., Mach, R.I., Peterbauer, C.K., Lorito, M.: Trichoderma: from genes to biocontrol. Plant Pathol. J. 83, 11–23 (2001).
  26. 26.
    Herpoël-Gimbert, I., Margeot, A., Dolla, A., Jan, G., Mollé, D., Lignon, S., Mathis, H., Sigoillot, J.C., Monot, F., Asther, M.: Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol. Biofuels 1, 1–12 (2008). CrossRefGoogle Scholar
  27. 27.
    Adav, S.S., Chao, L.T., Sze, S.K.: Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degratation. Mol. Cell Proteomics. 11, 1–15 (2012). CrossRefGoogle Scholar
  28. 28.
    Bendtsen, J.D., Nielsen, H., Von Heijne, G., Brunak, S.: Improved prediction of signal peptides: signalP 3.0. J. Mol. Biol. 340, 783–795 (2004). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Bioquímica y Biología MolecularUniversidad de SevillaSevillaSpain
  2. 2.Facultad de CienciasEscuela Superior Politécnica de ChimborazoRiobambaEcuador
  3. 3.CIBERehd, Hospital Universitario de ValmeSevillaSpain

Personalised recommendations