Waste and Biomass Valorization

, Volume 10, Issue 10, pp 3173–3184 | Cite as

Assessing Methane Emission and Economic Viability of Energy Exploitation in a Typical Sicilian Municipal Solid Waste Landfill

  • Daniele Di TrapaniEmail author
  • Maurizio Volpe
  • Gaetano Di Bella
  • Antonio Messineo
  • Roberto Volpe
  • Gaspare Viviani
case study


Sanitary landfills for municipal solid waste (MSW) represent one of the major anthropogenic source of GHGs emissions and are directly responsible of the climate changes we are facing nowadays. Indeed, the biodegradable organic matter of MSW undergoes anaerobic digestion producing the landfill gas (LFG), whose main components are CH4 and CO2. Therefore, biomethane energy exploitation in MSW landfills will reduce GHGs emission positively affecting the global warming. The aim of the present study was to assess the methane production in a Sicilian landfill by comparing the results from field measurements of methane emission and the estimates achieved by applying different mathematical models. A subsequent energetic/economic analysis was carried out based on the Italian incentive mechanisms. Two different scenarios were simulated for LFG valorization considering either internal combustion engines or micro gas turbines. The evaluation of the economic viability was performed by applying the classic models of the Net Present Value and Internal Rate of Return. The results of the present study showed that the LFG produced in the investigated landfill could be profitably used as energetic source and the economic income due to thermal and electrical energy valorization might positively contribute to the landfill management.

Graphical Abstract


Methane emission Landfill Waste management Energy exploitation Economic viability 



Authors thank “ATO Enna Euno S.p.A.” Company and in particular Eng. Salvatore Rindone for providing the data of waste disposal and for the collaboration during the field campaign. Authors warmly thank Eng. Maria Gabriella Giustra and Eng. Davide Bonasera for their precious help during field campaign operations and data processing.

Supplementary material

12649_2018_321_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 KB)
12649_2018_321_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 21 KB)


  1. 1.
    Intergovernmental Panel on Climate Change, IPCC.: Climate change 2014—synthesis report (2014), Accessed 24 Nov 2017
  2. 2.
    Ishigaki, T., Yamada, M., Nagamori, M., Ono, Y., Inoue, Y.: Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature. Environ. Geol. 48, 845–853 (2005)CrossRefGoogle Scholar
  3. 3.
    Aronica, S., Bonanno, A., Piazza, V., Pignato, L., Trapani, S.: Estimation of biogas produced by landfill of Palermo, applying a Gaussian model. Waste Manag. 29, 233–239 (2009)CrossRefGoogle Scholar
  4. 4.
    Lee, U., Han, J., Wang, M.: Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J. Clean. Prod. 166, 335–342 (2017). CrossRefGoogle Scholar
  5. 5.
    Du, M., Peng, C., Wang, X., Chen, H., Wang, M., Zhu, Q.: Quantification of methane emissions from municipal solid waste landfills in China during the past decade. Renew. Sustain. Energy Rev. 78, 272–279 (2017). CrossRefGoogle Scholar
  6. 6.
    Huber-Humer, M., Gebert, J., Hilger, H.: Biotic system to mitigate landfill methane emissions. Waste Manag. 26(1), 33–46 (2008)CrossRefGoogle Scholar
  7. 7.
    Di Trapani, D., Di Bella, G., Viviani, G.: Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slope. Waste Manag. 33, 2108–2115 (2013)CrossRefGoogle Scholar
  8. 8.
    Scheutz, C., Pedersen, R.B., Petersen, P.H., Jørgensen, J.H.B., Ucendo, I.M.B., Mønster, J.G., Samuelsson, J., Kjeldsen, P.: Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manag. 34(7), 1179–1190 (2014)CrossRefGoogle Scholar
  9. 9.
    El-Fadel, M., Abi-Esber, L., Salhab, S.: Emission assessment at the Burj Hammoud inactive municipal landfill: viability of landfill gas recovery under the clean development mechanism. Waste Manag. 32(11), 2106–2114 (2012)CrossRefGoogle Scholar
  10. 10.
    Kumar, S., Nimchuk, N., Kumar, R., Zietsman, J., Ramani, T., Spiegelman, C., Kenney, M.: Specific model for the estimation of methane emission from municipal solid waste landfills in India. Bioresour. Technol. 216, 981–987 (2016)CrossRefGoogle Scholar
  11. 11.
    Aracil, C., Haro, P., Giuntoli, J., Ollero, P.: Proving the climate benefit in the production of biofuels from municipal solid waste refuse in Europe. J. Clean. Prod. 142, 2887–2900 (2017). CrossRefGoogle Scholar
  12. 12.
    Malinauskaite, J., Jouhara, H., Czajczyńska, D., Stanchev, P., Katsou, E., Rostkowsk, P., Thorne, R.J., Colón, J., Ponsá, S., Al-Mansour, F., Anguilano, L., Krzyżyńska, R., López, I.C., Vlasopoulos, A., Spencer, N.: Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy (2017). Google Scholar
  13. 13.
    ISPRA.: Italian Green House Gas Inventory 1990–2014, National Inventory Report 2016 (2016), Accessed 24 Nov 2017
  14. 14.
    Lohila, A., Laurila, T., Tuovinen, J.P., Aurela, M., Hatakka, J., Thum, T., Pihlatie, M., Rinne, J., Vesala, T.: Micrometeorological measurements of methane and carbon dioxide fluxes at a municipal landfill. Environ. Sci. Technol. 41(8), 2717–2722 (2007)CrossRefGoogle Scholar
  15. 15.
    De Gioannis, G., Muntoni, A., Cappai, G., Milia, S.: Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Manag. 29(3), 1026–1034 (2009)CrossRefGoogle Scholar
  16. 16.
    Cucchiella, F., D’Adamo, I., Gastaldi, M.: Sustainable waste management: waste to energy plant as an alternative to landfill. Energy Convers. Manag. 131, 18–31 (2017)CrossRefGoogle Scholar
  17. 17.
    Directive 2008/98/EC on waste and repealing certain directives. Official Journal of the European Union, L 312/3–30 (22.11.08)Google Scholar
  18. 18.
    Bove, R., Lunghi, P.: Electric power generation from landfill gas using traditional and innovative technologies. Energy Convers. Manag. 47, 1391–1401 (2006). CrossRefGoogle Scholar
  19. 19.
    Messineo, A., Panno, D.: Municipal waste management in Sicily: practices and challenges. Waste Manag. 28, 1201–1208 (2008). CrossRefGoogle Scholar
  20. 20.
    Calabrò, P.: Greenhouse gases emission from municipal waste management: the role of separate collection. Waste Manag. 29(7), 2178–2187 (2009)CrossRefGoogle Scholar
  21. 21.
    Messineo, A., Freni, G., Volpe, R.: Collection of thermal energy available from a biogas plant for leachate treatment in an urban landfill: a Sicilian case study. Energies 5(10), 3753–3767 (2012)CrossRefGoogle Scholar
  22. 22.
    El-Fadel, M., Findikakis, A.N., Leckie, J.O.: Gas simulation models for solid waste landfills. Crit. Rev. Environ. Sci. Technol. 27(3), 237–283 (1997)CrossRefGoogle Scholar
  23. 23.
    Gregory, R.G., Attenborough, G.M., Hall, D.C., Deed, C.: The validation and development of an integrated landfill gas risk assessment model GasSim. In: Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium Cagliari, Italy (2003)Google Scholar
  24. 24.
    Intergovernmental Panel on Climate Change, IPCC.: Guidelines for National Greenhouse Gas Inventories. IPCC 2006 Guidelines, Geneva 2006Google Scholar
  25. 25.
    Morcet, M., Aran, C., Bogner, J., Chanton, J., Spokas, K., Hebe, I.: Methane mass balance: a review of field results from three french landfill case studies. Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium Cagliari, Italy (2003)Google Scholar
  26. 26.
    Scharff, H., Oonk, J., Hensen, A.: Quantifying landfill gas emissions in the Netherlands—definition study. NOVEM Program Reduction of Other Greenhouse Gases (ROB), Project No. 374399/9020, Utrecht, Netherlands (2000). Available from:
  27. 27.
    Sharff, H., Jacobs, J.: Applying guidance for methane emission estimation for landfills. Waste Manag. 26, 417–429 (2006)CrossRefGoogle Scholar
  28. 28.
    Di Bella, G., Di Trapani, D., Viviani, G.: Evaluation of methane emissions from Palermo municipal landfill: comparison between field measurements and models. Waste Manag. 31, 1820–1826 (2011)CrossRefGoogle Scholar
  29. 29.
    Cossu, R., Andreottola, G., Muntoni, A.: 1996. Modelling landfill gas production. In: Christensen, T.H., Cossu, R., Stegmann, R. (eds.), Landfilling of Waste: Biogas, E & FN Spon, London, ISBN 0 419 19400 2, pp. 237–268Google Scholar
  30. 30.
    Bogner, J.K., Scott, P.: Landfill CH4-emissions: guidance for field measurements. Prepared for IEA Expert Group on Landfill Gas (1995)Google Scholar
  31. 31.
    Mosher, B.W., Czepiel, P.M., Harris, R.C.: Methane emissions at nine landfill sites in the Northeastern United States. Environ. Sci. Technol. 33, 2088–2094 (1999)CrossRefGoogle Scholar
  32. 32.
    Perrera, M.D.N., Hettiaratchi, J.P.A., Acari, G.: A mathematical model to improve the accuracy of gas emission measurements from landfills. In: Proceedings Sardinia 1999, Seventh International Waste Management and Landfill Symposium Cagliari, Italy (1999)Google Scholar
  33. 33.
    Maurice, C., Lagerkvist, A.: Seasonal influences of landfill gas emission. In: Proceedings Sardinia 1997, Sixth International Waste Management and Landfill Symposium Cagliari, Italy (1997)Google Scholar
  34. 34.
    Savanne, D., Arnaud, A., Beneito, A., Berne, P., Burkhalter, R., Cellier, P., Gonze, M.A., Laville, P., Levy, F., Milward, R., Pokryszka, Z., Sabroux, J.C., Tauziede, C., Tregoures, A.: Comparison of different methods for measuring landfill methane emissions. In: Proceedings Sardinia 1997, Sixth International Waste Management and Landfill Symposium, Cagliari, Italy (1997)Google Scholar
  35. 35.
    US Environmental Protection Agency, USEPA.: Quantifying Uncontrolled Landfill Gas Emissions from Two Florida Landfills, USA (2009). Available from:
  36. 36.
    Czepiel, P.M., Mosher, B., Harriss, R.C., Shorter, J.H., McManus, J.B., Kolb, C.E., Allwine, E., Lamb, C.E.: Landfill methane emission measured by enclouser and atmospheric tracer methods. J. Geophys. Res. 101(D11), 16711–16719 (1996)CrossRefGoogle Scholar
  37. 37.
    Capaccioni, B., Caramelli, C., Tatàno, F., Viscione, A.: Effects of a temporary HDPE cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an Italian landfill. Waste Manag. 31, 956–965 (2011)CrossRefGoogle Scholar
  38. 38.
    EA (Environment Agency).: Guidance on monitoring landfill gas surface emissions—LFTGN07 v2 2010 (2010).…/LFTGN07.pdf. Accessed 16 Dec 2017
  39. 39.
    US Environmental Protection Agency, USEPA.: Landfill Gas Emissions Model (LandGEM), Version 3.02, USA (2005). Available from: dir1/LandGEM-v302-guide.pdf.
  40. 40.
    Ehrig, H.J.: Prediction of gas production from laboratory scale tests. In: Proceeding Sardinia 1991, Third International Landfill Symposium 1, Cagliari, Italy (1991), pp. 87–114Google Scholar
  41. 41.
    Abichou, T., Chanton, J., Powelson, D., Fleiger, J., Escoriaza, S., Lei, Y., Stern, J.: Methane flux and oxidation at two types of intermediate landfill covers. Waste Manag. 26(11), 1305–1312 (2006)CrossRefGoogle Scholar
  42. 42.
    Penteado, R., Cavalli, M., Magnano, E., Chiampo, F.: Application of the IPCC model to a Brazilian landfill: first results. Energy Policy 42, 551–556 (2012)CrossRefGoogle Scholar
  43. 43.
    Scheutz, C., Kjeldsen, P., Bogner, J.E., De Visscher, A., Gebert, J., Hilger, H.A., Huber-Humer, M., Spokas, K.: Microbial methane oxidation processes andtechnologies for mitigation of landfill gas emissions. Waste Manage. Res. 27, 409–455 (2009)CrossRefGoogle Scholar
  44. 44.
    Gebert, J., Gröngröft, A., Pfeiffer, E.M.: Relevance of soil physical properties for the microbial oxidation of methane in landfill covers. Soil Biol. Biochem. 43, 1759–1767 (2011)CrossRefGoogle Scholar
  45. 45.
    Cabral, A.R., Tremblay, P., Lefebvre, G.: Determination of the diffusion coefficient of oxygen for a cover system including a pulp and paper by-product. Geotech. Test. J. 27, 1–14 (2004)Google Scholar
  46. 46.
    Gebert, J., Gröngröft, A.: Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manag. 26, 399–407 (2007)CrossRefGoogle Scholar
  47. 47.
    Caresana, F., Comodi, G., Pelagalli, L., Pierpaoli, P., Vagni, S.: Energy production from landfill biogas: an italian case. Biomass Bioenergy 35, 4331–4339 (2011)CrossRefGoogle Scholar
  48. 48.
    Phung, D.L.: Cost comparison of energy projects: discounted cash flow and revenue requirement methods. Energy 5(10), 1053–1072 (1980). CrossRefGoogle Scholar
  49. 49.
    Prasanna, C.: Financial Management Theory and Practice. Tata McGraw Hill Education Private Limited, New Delhi (2011) ISBN 978-0-07-107848-5Google Scholar
  50. 50.
    Raco, B., Cioni, R., Guidi, M., Scozzari, A., Lelli, M., Lippo, G.: Monitoraggio del flusso di biogas diffuso dal suolo da discariche RSU: il caso di Legoli, Peccioli (PI). RS, Rifiuti Solidi XZ (2), (2006) pp. 120–136 (in Italian)Google Scholar
  51. 51.
    Spokas, K., Graff, C., Morcet, M., Aran, C.: Implications of the spatial variability of landfill emission rates on geospatial analyses. Waste Manag. 23(7), 599–607 (2003)CrossRefGoogle Scholar
  52. 52.
    Oliveri, D.: Valutazione delle emissioni diffuse da una discarica controllata. Master Degree Thesis, Palermo University (2009) (in Italian)Google Scholar
  53. 53.
    Bernal, A.P., dos Santos, I.F.S., Moni Silva, A.P., Barros, R.M., Ribeiro, E.M.: Vinasse biogas for energy generation in Brazil: an assessment of economic feasibility, energy potential and avoided CO2 emissions. J. Clean. Prod. 151, 260–271 (2017). CrossRefGoogle Scholar
  54. 54.
    Leme, M.M.V., Rocha, M.H., Lora, E.E.S., Venturini, O.J., Lopes, B.M., Ferreira, C.H.: Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resour. Conserv. Recycl. 87, 8–20 (2014). CrossRefGoogle Scholar
  55. 55.
    Rapporto commissionato da AEEG al Politecnico di Milano—Dipartimento di Energia.: Costi di produzione di energia elettrica da fonti rinnovabili, Dicembre (2010) (in Italian)Google Scholar
  56. 56.
    Ismail, M.S., Moghavvemi, M., Mahlia, T.M.I.: Design of an optimized photovoltaic and microturbine hybrid power system for a remote small community: case study of Palestine. Energy Convers. Manag. 75, 271–281 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Daniele Di Trapani
    • 1
    Email author
  • Maurizio Volpe
    • 2
  • Gaetano Di Bella
    • 2
  • Antonio Messineo
    • 2
  • Roberto Volpe
    • 3
  • Gaspare Viviani
    • 1
  1. 1.Department of Civil, Environmental, Aerospace and Materials Engineering (DICAM)Università degli Studi di PalermoPalermoItaly
  2. 2.Faculty of Engineering and ArchitectureUniversità degli Studi di Enna “Kore”EnnaItaly
  3. 3.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK

Personalised recommendations