Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 10, pp 2897–2906 | Cite as

Functional Properties, Total Phenolic Content and Antioxidant Activity of Purple Cactus Pear (Opuntia ficus-indica) Waste: Comparison with Commercial Fibers

  • Araceli Monter-Arciniega
  • Tania Atzimba Hernández-Falcón
  • Nelly del Socorro Cruz-CansinoEmail author
  • Esther Ramírez-Moreno
  • Ernesto Alanís-García
  • José Arias-Rico
  • José Alberto Ariza-Ortega
Original Paper
  • 141 Downloads

Abstract

The aim of this study was to determine the proximate chemical composition, dietary fiber functional properties, viscosity, total phenolic content, antioxidant capacity and color of purple cactus pear waste (PCPW) in comparison with commercial fibers. PCPW had similar moisture, ash and functional properties as the other fibers, also low protein, fat and total dietary fiber content but showed higher fat absorption capacity (3.38 g g−1). All fibers had a non-Newtonian pseudoplastic behavior and had high total phenolic content except the commercial fiber of Plantagum psylium which formed a gel and had the lowest total phenolic content. PCPW had the highest antioxidant activity measured by ABTS with 1485.14 µmol TE 100 g−1 dry basis, high content of digestible carbohydrates (73%) and an intense red color in comparison to the commercial samples.

Keywords

Waste Purple cactus pear Opuntia ficus indica Dietary fiber Functional properties Viscosity Phenolic content Antioxidant activity Color 

Notes

Acknowledgements

This study was possible thanks to the financial support from the Programa de Fortalecimiento de la Calidad en Instituciones Educativas (PROFOCIE 2015–2016). The authors acknowledge to the Mexican association CoMeNTuna A. C. (Comisión Mexicana del Nopal y la Tuna A.C.), Hidalgo, México, for providing the plant materials. The first and second author developed this study during their Bachelor of Nutrition studies.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest to declare.

References

  1. 1.
    Cofepris. Suplementos Alimenticios. http://www.cofepris.gob.mx/Paginas/Suplementos%20Alimenticios/Suplementos-Alimenticios.aspx (2016). Accessed 16 Oct 2016)
  2. 2.
    Ayala-Zavala, J., Vega-Vega, V., Rosas-Dominguez, C., Palafox-Carlos, H., Villa-Rodríguez, J.A., Siddiqui, W.M., Dávila-Aviñaa, J.E., González-Aguilar, G.A.: Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 44, 1866–1874 (2011).  https://doi.org/10.1016/j.foodres.2011.02.021 CrossRefGoogle Scholar
  3. 3.
    Papathanasopoulos, A., Camilleri, M.: Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology 138, 65–72 (2010)CrossRefGoogle Scholar
  4. 4.
    Figuerola, F., Hurtado, M.L., Estevez, A.M., Chiffelle, I., Asenjo, F.: Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 91, 395–401 (2005).  https://doi.org/10.1016/j.foodchem.2004.04.036 CrossRefGoogle Scholar
  5. 5.
    Lousada-Júnior, J.E., Correia da-Costa, J.M., Miranda-Neiva, J.N., Rodríguez, N.M.: Physical-chemical characterization of tropical fruit by-products for use in animal feed. Rev. Ciênc. Agron. 37, 70–76 (2006)Google Scholar
  6. 6.
    SAGARPA. Exportan productores nopal y tuna xoconostle a Estados Unidos. http://www.gob.mx/sagarpa/articulos/exportan-productores-nopal-y-tuna-xoconostle-a-estados-unidos (2016). Accessed 20 Jan 2016
  7. 7.
    SAGARPA. Inicia exportación de nopal, tuna xoconostle y penca de maguey del Estado de México a Estados Unidos. http://www.gob.mx/sagarpa/prensa/inicia-exportacion-de-nopal-tuna-xoconostle-y-penca-de-maguey-del-estado-de-mexico-a-estados-unidos (2015). Accessed 14 Jan 2016
  8. 8.
    Cassano, A., Conidi, C., Drioli, E.: Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. Desalination 250, 1101–1104 (2010).  https://doi.org/10.1016/j.desal.2009.09.117 CrossRefGoogle Scholar
  9. 9.
    SAGARPA.: Nopal y tuna, una mirada a su realidad actual. Claridades Agropecuarias 213, 3–12 (2011)Google Scholar
  10. 10.
    García-Mata, R., González-Machorro, M.F., García-Sánchez, R.C., Mora-Flores, J.S., González-Estrada, A., Martínez-Damian, M.A.: Banana (Musa paradisiaca) market in México 1971–2017. Agrociencia 47, 399–410 (2013)Google Scholar
  11. 11.
    Saenz, C.: Processing technologies: an alternative for cactus pear (Opuntia spp.) fruits and cladodes. J. Arid Environ. 46, 209–225 (2000).  https://doi.org/10.1006/jare.2000.0676 CrossRefGoogle Scholar
  12. 12.
    Bensadón, S., Hervert-Hernández, D., Sáyago-Ayerdi, S.G., Goñi, I.: By-products of Opuntia ficus indica as a source of antioxidant dietary fiber. Plant Foods Hum. Nutr. 65, 210–216 (2010).  https://doi.org/10.1007/s11130-010-0176-2 CrossRefGoogle Scholar
  13. 13.
    Ramírez-Moreno, E., Cordoba-Díaz, D., Sánchez-Mata, M.D., Díez-Marqués, C., Goñi, I.: Effect of boiling on nutritional, antioxidant and physicochemical characteristics in cladodes (Opuntia ficus indica). LWT-J. Food. Sci. Technol. 51, 296–302 (2013).  https://doi.org/10.1016/j.lwt.2012.10.005 CrossRefGoogle Scholar
  14. 14.
    Horwitz, W., Latimer, G. (eds.): Official Methods of Analysis of AOAC International, 18th edn. AOAC International, Gaithersburg (2005)Google Scholar
  15. 15.
    Symons, L.J., Brennan, C.S.: The effect of barley β-glucan fiber fractions on starch gelatinization and pasting characteristics. J. Food Sci. 69, 257–261 (2004).  https://doi.org/10.1111/j.1365-2621.2004.tb06325.x CrossRefGoogle Scholar
  16. 16.
    Raghavendra, S.N., Ramachandra-Swamy, S.R., Rastogi, N.K., Raghavarao, K.S.M.S., Kumar, S., Tharanathan, R.N.: Grinding characteristics and hydration properties of coconut residue: a source of dietary fiber. J. Food Eng. 72, 281–286 (2006).  https://doi.org/10.1016/j.jfoodeng.2004.12.008 CrossRefGoogle Scholar
  17. 17.
    Temelli, F.: Extraction and functional properties of barley β-glucan as affected by temperature and pH. J. Food Sci. 62, 1194–1201 (1997).  https://doi.org/10.1111/j.1365-2621.1997.tb12242.x CrossRefGoogle Scholar
  18. 18.
    Femenia, A., Lefebvre, A.C., Thebaudin, J.Y., Robertson, J.A., Bourgeois, C.M.: Physical and sensory properties of model foods supplemented with cauliflower fiber. J. Food Sci. 62, 635–639 (1981).  https://doi.org/10.1111/j.1365-2621.1997.tb15426.x CrossRefGoogle Scholar
  19. 19.
    Ou, S., Kwok, K., Li, Y., Fu, L.: In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. ‎J. Agric. Food Chem. 49, 1026–1029 (2001).  https://doi.org/10.1021/jf000574n CrossRefGoogle Scholar
  20. 20.
    Chau, C.F., Huang, Y.L., Lee, M.H.: In vitro hypoglycemic effects of different insoluble fiber-rich fractions prepared from the peel of Citrus sinensis L. cv. Liucheng. J. Agric. Food Chem. 51, 6623–6626 (2003).  https://doi.org/10.1021/jf034449y CrossRefGoogle Scholar
  21. 21.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).  https://doi.org/10.1021/ac60147a030 CrossRefGoogle Scholar
  22. 22.
    Frost, J., Hegedus, E.F., Glicksman, M.: Objective characterization of hydrocolloid organoleptic properties. Food Technol. 38, 118–122 (1984)Google Scholar
  23. 23.
    Pérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz-Rubio, M.E., Serrano, J., Goñi, I., Saura-Calixto, F.: Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: extraction, measurement and expression of results. Food Res. Int. 41, 74–85 (2008).  https://doi.org/10.1016/j.foodres.2007.12.004 CrossRefGoogle Scholar
  24. 24.
    Stintzing, F.C., Herbach, K.M., Mosshammer, M.R., Carle, R., Yi, W., Sellappan, S., Akoh, C.C., Bunch, R., Felker, P.: Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J. Agric. Food Chem. 53, 442–451 (2005).  https://doi.org/10.1021/jf048751y CrossRefGoogle Scholar
  25. 25.
    Kuskoski, E.M., Asuero, A.G., Troncoso, A.M., Mancini-Filho, J., Fett, R.: Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Sci. Technol. 25, 726–732 (2005).  https://doi.org/10.1590/S0101-20612005000400016 CrossRefGoogle Scholar
  26. 26.
    Morales, F.J., Jiménez-Pérez, S.: Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem. 72, 119–125 (2001).  https://doi.org/10.1016/S0308-8146(00)00239-9 CrossRefGoogle Scholar
  27. 27.
    Francis, F.J.: Color quality evaluation of horticultural crops. HortScience 15, 58–59 (1980)Google Scholar
  28. 28.
    Ramírez-Moreno, E., Hervert-Hernández, D., Sánchez-Mata, M.C., Díez-Marqués, C., Goñi, I.: Intestinal bioaccessibility of polyphenols and antioxidant capacity of pulp and seeds of cactus pear. Int J. Food Sci. Nutr. 62, 839–843 (2011).  https://doi.org/10.3109/09637486.2011.580731 CrossRefGoogle Scholar
  29. 29.
    Slavin, J.L.: Impact of the proposed definition of dietary fiber on nutrient databases. J. Food Compos. Anal. 16, 287–291 (2003).  https://doi.org/10.1016/S0889-1575(03)00053-X CrossRefGoogle Scholar
  30. 30.
    Álvarez, E.E., Sánchez, P.G.: La fibra dietética. Nutr. Hosp. 21, 61–72 (2006)Google Scholar
  31. 31.
    Russell, D.G., Parnell, W.R., Wilson, N.C., Faed, J., Ferguson, E., Herbison, P., Horwath, C., Nye, T., Reid, P., Walker, R., Wilson, B., Tukuitonga, C.: NZ Food: NZ People: Key Results of the 1997 National Nutrition Survey. Mon Bull Ministry of Health Public Health Laboratory Service (G. B.), Wellington (1999)Google Scholar
  32. 32.
    Waldron, K.W., Parker, M.L., Smith, A.C.: Plant cell walls and food quality. Compr. Rev. Food Sci. Food Saf. 2, 128–146 (2003).  https://doi.org/10.1111/j.1541-4337.2003.tb00019.x CrossRefGoogle Scholar
  33. 33.
    Goñi, I., Valdivieso, L., Gudiel-Urbano, M.: Capacity of edible seaweeds to modify in vitro starch digestibility of wheat bread. Nahrung 46, 18–20 (2002).  https://doi.org/10.1002/1521-3803(20020101) CrossRefGoogle Scholar
  34. 34.
    López, G., Ros, G., Rincón, F., Periago, M.J., Martínez, M.C., Ortuño, J.: Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke. J. Agric. Food Chem. 44, 2773–2778 (1996).  https://doi.org/10.1021/jf9507699 CrossRefGoogle Scholar
  35. 35.
    Prakongpan, T., Nitithamyong, A., Luangpituksa, P.: Extraction and application of dietary fiber and cellulose from pineapple cores. J. Food Sci. 67, 1308–1313 (2002).  https://doi.org/10.1111/j.1365-2621.2002.tb10279.x CrossRefGoogle Scholar
  36. 36.
    Stintzing, F.C., Schieber, A., Carle, R.: Phytochemical and nutritional significance of cactus pear. Eur. Food Res. Technol. 212, 396–407 (2001).  https://doi.org/10.1007/s002170000219 CrossRefGoogle Scholar
  37. 37.
    Slavin, J.L.: Dietary fiber and body weight. Nutrition 21, 411–418 (2005).  https://doi.org/10.1016/j.nut.2004.08.018 CrossRefGoogle Scholar
  38. 38.
    Dikeman, C.L., Fahey, G.C.: Viscosity as related to dietary fiber. Crit. Rev. Food Sci. Nutr. 46, 649–663 (2006).  https://doi.org/10.1080/10408390500511862 CrossRefGoogle Scholar
  39. 39.
    De Graaf, C., Blom, W.A., Smeets, P.A., Stafleu, A., Hendriks, H.F.: Biomarkers of satiation and satiety. Am. J. Clin. Nutr. 79, 946–961 (2004)CrossRefGoogle Scholar
  40. 40.
    Marciani, L., Gowland, P.A., Spiller, R.C., Manoj, P., Moore, R.J., Young, P., Al-Sahab, S., Bush, D., Wright, J., Fillery-Travis, A.J.: Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans. J. Nutr. 130, 122–127 (2000)CrossRefGoogle Scholar
  41. 41.
    Zhao, Y., Cao, Y., Yang, Y., Wu, C.: Rheological study of the sol-gel transition of hybrid gels. Macromolecules 36, 855–859 (2003).  https://doi.org/10.1021/ma020919y CrossRefGoogle Scholar
  42. 42.
    Yeddes, N., Chérif, J.K., Guyot, S., Baron, A., Trabelsi-Ayali, M.: Phenolic profile of Tunisian Opuntia ficus indica thornless form flowers via chromatographic and spectral analysis by reversed phase-high performance liquid chromatography-UV-photodiode array and electrospray ionization-mass spectrometer. Int. J. Food Prop. 17, 741–751 (2014).  https://doi.org/10.1080/10942912.2012.665404 CrossRefGoogle Scholar
  43. 43.
    D’ Archivio, M., Filesi, C., Di Benedetto, R., Gargiulo, R., Giovannini, C., Masella, R.: Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita 43, 348 (2007)Google Scholar
  44. 44.
    Roginsky, V., Lissi, E.A.: Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 92, 235–254 (2005).  https://doi.org/10.1016/j.foodchem.2004.08.004 CrossRefGoogle Scholar
  45. 45.
    Coria-Cayupán, Y.S., Ochoa, M.J., Nazareno, M.A.: Health-promoting substances and antioxidant properties of Opuntia sp. fruits: changes in bioactive-compound contents during ripening process. Food Chem. 126, 514–519 (2011).  https://doi.org/10.1016/j.foodchem.2010.11.033 CrossRefGoogle Scholar
  46. 46.
    Arnao, M.B.: Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci. Technol. 11, 419–421 (2000).  https://doi.org/10.1016/S0924-2244(01)00027-9 CrossRefGoogle Scholar
  47. 47.
    Brighenti, F., Valtueña, S., Pellegrini, N., Ardigo, D., Del Rio, D., Salvatore, S., Piatti, P.M., Serafini, M., Zavaroni, I.: Total antioxidant capacity of the diet is inversely and independently related to plasma concentration of high-sensitivity C-reactive protein in adult Italian subjects. Br. J. Nutr. 93, 619–625 (2005).  https://doi.org/10.1079/BJN20051400 CrossRefGoogle Scholar
  48. 48.
    Leon, K., Mery, D., Pedreschi, F., Leon, J.: Color measurement in L* a* b* units from RGB digital images. Food Res. Int. 39, 1084–1091 (2006).  https://doi.org/10.1016/j.foodres.2006.03.006 CrossRefGoogle Scholar
  49. 49.
    Castellanos-Santiago, E., Yahia, E.M.: Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high performance liquid chromatography and electrospray ionization mass spectrometry. J. Agric. Food Chem. 56, 5758–5764 (2008).  https://doi.org/10.1021/jf800362t CrossRefGoogle Scholar
  50. 50.
    Aguedo, M., Kohnen, S., Rabetafika, N., Bossche, S.V., Sterckx, J., Blecker, C., Beauve, C., Paquot, M.: Composition of by-products from cooked fruit processing and potential use in food products. J. Food Compos. Anal. 27, 61–69 (2012).  https://doi.org/10.1016/j.jfca.2012.04.005 CrossRefGoogle Scholar
  51. 51.
    Schieber, A., Hilt, P., Streker, P., Endre, H.U., Rentschler, C., Carle, R.: A new process for the combined recovery of pectins and phenolic compounds from apple pomace. Innov. Food Sci. Emerg. Technol. 4, 99–107 (2003).  https://doi.org/10.1016/S1466-8564(02)00087-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Araceli Monter-Arciniega
    • 1
  • Tania Atzimba Hernández-Falcón
    • 1
  • Nelly del Socorro Cruz-Cansino
    • 1
    Email author
  • Esther Ramírez-Moreno
    • 1
  • Ernesto Alanís-García
    • 1
  • José Arias-Rico
    • 2
  • José Alberto Ariza-Ortega
    • 1
  1. 1.Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la SaludUniversidad Autónoma del Estado de HidalgoSan Agustín TlaxiacaMexico
  2. 2.Area Académica de Enfermería, Instituto de Ciencias de la SaludUniversidad Autónoma del Estado de HidalgoSan Agustín TlaxiacaMexico

Personalised recommendations