Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 10, pp 2851–2861 | Cite as

Optimization of Lycopene Extraction from Tomato Processing Waste Using an Eco-Friendly Ethyl Lactate–Ethyl Acetate Solvent: A Green Valorization Approach

  • Yasmini P. A. Silva
  • Tânia A. P. C. Ferreira
  • Giovana B. Celli
  • Marianne S. BrooksEmail author
Original Paper

Abstract

Lycopene is a highly-prized antioxidant with associated health benefits and is abundant in natural sources. A green valorization approach was used to extract lycopene from tomato processing waste. Ultrasound-assisted extraction was applied to the tomato waste using an eco-friendly solvent mixture containing ethyl lactate and ethyl acetate for the extraction of lycopene. Extraction parameters were: X1 = extraction temperature (°C), X2 = proportion of ethyl acetate in solvent mixture (% v/v), X3 = solvent:sample ratio (mL/g), and X4 = extraction time (min). A Box–Behnken design was used to define experimental conditions, and response surface methodology was then conducted to determine the optimized conditions: X1 = 63.4 °C, X2 = 30% (v/v), X3 = 100 mL/g, and X4 = 20 min. The experimental optimized extraction yield of lycopene was 1334.8 µg/g (d.w.), in agreement with the predicted yield. At the same conditions without ultrasound, a yield of 1209.5 µg/g (d.w.) was obtained (9.4% lower). Ultrasound increases extraction yield, and tomato processing by-products are a viable alternative source of extractable lycopene. This represents a greener strategy for the extraction of lycopene in comparison to conventional methods using organic solvents, and shows a promising alternative use for a food processing waste.

Keywords

By-product Green extraction Carotenoids Box–Behnken design Response surface methodology Biomass utilization Extraction/separation 

Notes

Acknowledgements

The authors would like to thank the processing company who provided the tomato pomace for this study and are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Coordination for the Improvement of Higher Education Personnel) (CAPES—Brazil), the Department of Foreign Affairs, Trade and Development (DFATD—Canada), and the Natural Sciences and Engineering Research Council (NSERC—Canada) for financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12649_2018_317_MOESM1_ESM.pdf (148 kb)
Supplementary material 1 (PDF 147 KB)

References

  1. 1.
    Galanakis, C.M.: Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 26, 68–87 (2012)CrossRefGoogle Scholar
  2. 2.
    Mirabella, N., Castellani, V., Sala, S.: Current options for the valorization of food manufacturing waste: a review. J. Clean Prod. 65, 28–41 (2014)CrossRefGoogle Scholar
  3. 3.
    Rao, A.V., Agarwal, S.: Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: a review. Nutr. Res. 19(2), 305–323 (1999)CrossRefGoogle Scholar
  4. 4.
    Rodriguez-Amaya, D.B., Kimura, M.: Harvestplus Handbook for Carotenoid Analysis. HarvestPlus Technical Monograph 2. International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT), Washington, DC (2004)Google Scholar
  5. 5.
    Singh, P., Goyal, G.K.: Dietary lycopene: its properties and anticarcinogenic effects. Compr. Rev. Food Sci. Food Saf. 7, 255–270 (2008)CrossRefGoogle Scholar
  6. 6.
    Ciriminna, R., Fidalgo, A., Meneguzzo, F., Ilharco, L.M., Pagliaro, M.: Lycopene: emerging production methods and applications of a valued carotenoid. ACS Sustain. Chem. Eng. 4(3), 643–650 (2016)CrossRefGoogle Scholar
  7. 7.
    Arimboor, R., Natarajan, R.B., Menon, K.R., Chandrasekhar, L.P., Moorkoth, V.: Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review. J. Food Sci. Technol. 52(3), 1258–1271 (2015)CrossRefGoogle Scholar
  8. 8.
    Celli, G.B., Teixeira, A.G., Duke, T.G., Brooks, M.S.: Encapsulation of lycopene from watermelon in calcium-alginate microparticles using an optimized inverse-gelation method. Int. J. Food Sci. Technol. 51, 1523–1529 (2016)CrossRefGoogle Scholar
  9. 9.
    Shen, R., Jiang, X., Ye, W., Song, X., Liu, L., Lao, X., Wu, C.: A novel and practical synthetic route for the total synthesis of lycopene. Tetrahedron 67, 5610–5614 (2011)CrossRefGoogle Scholar
  10. 10.
    Rath, S., Olempska-Beer, Z., Kuznesof, P.M.: Lycopene extract from tomato. Chemical and Technical Assessment (CTA). http://www.fao.org/fileadmin/templates/agns/pdf/jecfa/cta/71/lycopene_extract_from_tomato.pdf (2009). Accessed 28 Aug 2017
  11. 11.
    Sharma, S.K., Le Maguer, M.: Lycopene in tomatoes and tomato pulp fractions. Ital. J. Food Sci. 8(2), 107–113 (1996)Google Scholar
  12. 12.
    Wang, L., Weller, C.L.: Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17, 300–312 (2006)CrossRefGoogle Scholar
  13. 13.
    FDA (U.S. Food and Drug Administration): Food Additive Status List. U.S. Department of Health and Human Service, Silver Spring, MD. https://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm091048.htm#ftnH (2018). Accessed 07 Apr 2018
  14. 14.
    ATSDR (Agency for Toxic Substances and Disease Registry): Toxicological profile for n-Hexane. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA. https://www.atsdr.cdc.gov/toxprofiles/tp113.pdf (1999). Accessed 21 June 2017
  15. 15.
    Strati, I.F., Oreopoulou, V.: Process optimisation for recovery of carotenoids from tomato waste. Food Chem. 129, 747–752 (2011)CrossRefGoogle Scholar
  16. 16.
    Hartwig, A.: Ethyl acetate. In: The MAK-Collection for Occupational Health and Safety. Part I: MAK Value Documentations. pp. 167–176. Wiley, Hoboken (2012)Google Scholar
  17. 17.
    WHO (World Health Organization): Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). http://apps.who.int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=2357 (1996). Accessed 07 Apr 2018
  18. 18.
    Cascant, M.M., Breil, C., Garrigues, S., de la Guardia, M., Fabiano-Tixier, A.S., Chemat, F.: A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane. Anal. Bioanal. Chem. 409, 3527–3539 (2017)CrossRefGoogle Scholar
  19. 19.
    Calvo, M.M., Dado, D., Santa-Maria, G.: Influence of extraction with ethanol or ethyl acetate on the yield of lycopene, β-carotene, phytoene and phytofluene from tomato peel powder. Eur. Food Res. Technol. 224, 567–571 (2007)CrossRefGoogle Scholar
  20. 20.
    Lavecchia, R., Zuorro, A.: Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur. Food Res. Technol. 228, 153–158 (2008)CrossRefGoogle Scholar
  21. 21.
    Lianfu, Z., Zelong, L.: Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason. Sonochem. 15, 731–737 (2008)CrossRefGoogle Scholar
  22. 22.
    Villanueva-Bermejo, D., Reglero, G., Fornari, T.: Recent advances in the processing of green tea biomolecules using ethyl lactate. A review. Trends Food Sci. Technol. 62, 1–12 (2017)CrossRefGoogle Scholar
  23. 23.
    Pereira, C.S.M., Silva, V.M.T.M., Rodrigues, A.E.: Ethyl lactate as a solvent: properties, applications, and production processes—a review. Green Chem. 13, 2658–2671 (2011)CrossRefGoogle Scholar
  24. 24.
    Ishida, B.K., Chapman, M.H.: Carotenoid extraction from plants using a novel, environmentally friendly solvent. J. Agric. Food Chem. 57, 1051–1059 (2009)CrossRefGoogle Scholar
  25. 25.
    Strati, I.F., Oreopoulou, V.: Effect of extraction parameters on the carotenoid recovery from tomato waste. Int. J. Food Sci. Technol. 46, 23–29 (2011)CrossRefGoogle Scholar
  26. 26.
    Strati, I.F., Gogou, E., Oreopoulou, V.: Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food Bioprod. Process. 94, 668–674 (2015)CrossRefGoogle Scholar
  27. 27.
    Strati, I.F., Oreopoulou, V.: Recovery and isomerization of carotenoids from tomato processing by-products. Waste Biomass Valoriz. 7(4), 843–850 (2016)CrossRefGoogle Scholar
  28. 28.
    Chemat, F., Rombaut, N., Sicaire, A., Meullemiestre, A., Fabiano-Tixier, A., Abert-Vian, M.: Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 34, 540–560 (2017)CrossRefGoogle Scholar
  29. 29.
    Vilkhu, K., Mawson, R., Simons, L., Bates, D.: Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innov. Food Sci. Emerg. 9, 161–169 (2008)CrossRefGoogle Scholar
  30. 30.
    Suslick, K.S.: Sonochemistry. Science 247(4949), 1439–1445 (1990)CrossRefGoogle Scholar
  31. 31.
    Zardo, I., Sobczyk, A.E., Marczak, L.D.F., Sarkis, J.: Optimization of ultrasound assisted extraction of phenolic compounds from sunflower seed cake using response surface methodology. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-017-0038-3 Google Scholar
  32. 32.
    Deng, G., Xu, D., Li, S., Li, H.: Optimization of ultrasound-assisted extraction of natural antioxidants from sugar apple (Annona squamosa L.) peel using response surface methodology. Molecules 20, 448–459 (2015)Google Scholar
  33. 33.
    Londoño-Londoño, J., Lima, V.R., Lara, O., Gil, A., Pasa, T.B.C., Arango, G.J., Pineda, J.R.R.: Clean recovery of antioxidant flavonoids from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chem. 119, 81–87 (2010)CrossRefGoogle Scholar
  34. 34.
    Eh, A.L., Teoh, S.: Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason. Sonochem. 19, 151–159 (2012)CrossRefGoogle Scholar
  35. 35.
    Ahmadi, M., Heidari, O., Nafchi, A.R.M.: Optimization of lycopene extraction from tomato waste with the integration of ultrasonic—enzymatic processes by response surface methodology. J. Ind. Eng. Res. 1(2), 29–34 (2015)Google Scholar
  36. 36.
    Konwarh, R., Pramanik, S., Kalita, D., Mahanta, C.L., Karak, N.: Ultrasonication—a complementary ‘green chemistry’ tool to biocatalysis: a laboratory-scale study of lycopene extraction. Ultrason. Sonochem. 19, 292–299 (2012)CrossRefGoogle Scholar
  37. 37.
    Kumcuoglu, S., Yilmaz, T., Tavman, S.: Ultrasound assisted extraction of lycopene from tomato processing wastes. J. Food Sci. Technol. 51(12), 4102–4107 (2014)CrossRefGoogle Scholar
  38. 38.
    AOAC (Association of Official Analytical Chemists): Method 934.06: Moisture in Dried Fruits. Official Methods of Analysis of the AOAC International, 18 edn. AOAC International, Gaithersburg (2005)Google Scholar
  39. 39.
    Kaur, D., Wani, A.A., Oberoi, D.P.S., Sogi, D.S.: Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chem. 108, 711–718 (2008)CrossRefGoogle Scholar
  40. 40.
    Box, G.E., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design, Innovation, and Discovery, 2 edn. Wiley, Hoboken (2005)zbMATHGoogle Scholar
  41. 41.
    NIST/SEMATECH: NIST/SEMATECH e-Handbook of Statistical Methods. 5. Process Improvement. http://www.itl.nist.gov/div898/handbook/pri/pri.htm (2012). Accessed 05 Apr 2017
  42. 42.
    Silva, Y.P.A., Pereira, V.A., Brooks, M.S., Ferreira, T.A.P.C.: Effect of solvent on lycopene extraction yield from tomato pomace. Paper presented at the CSBE/SCGAB Annual General Meeting and Technical Conference joint with CIGR VI Technical Symposium, Winnipeg, Canada. http://www.csbe-scgab.ca/publications/meeting-papers/csbe-technical-conferences/8072 (2017). Accessed 25 Aug 2017
  43. 43.
    Zang, L., Sommerburg, O., Van Kuijk, F.J.G.M.: Absorbance changes of carotenoids in different solvents. Free Radic. Biol. Med. 23(7), 1086–1089 (1997)CrossRefGoogle Scholar
  44. 44.
    Tonucci, L.H., Holden, J.M., Beecher, G.R., Khachik, F., Davis, C.S., Mulokozi, G.: Carotenoid content of thermally processed tomato-based food products. J. Agric. Food Chem. 43(3), 579–586 (1995)CrossRefGoogle Scholar
  45. 45.
    Gama, J.T., Tadiotti, A.C., Sylos, C.M.: Comparison of carotenoid content in tomato, tomato pulp and ketchup by liquid chromatography. Aliment. Nutr. 17(4), 353–358 (2006)Google Scholar
  46. 46.
    Periago, M.J.S., Rincón, F., Agüera, M.D., Ros, G.: Mixture approach for optimizing lycopene extraction from tomato and tomato products. J. Agric. Food Chem. 52, 5796–5802 (2004)CrossRefGoogle Scholar
  47. 47.
    Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nyström, Å, Pettersen, J., Bergman, R.: Experimental design and optimization. Chemom. Intell. Lab. 42(1), 3–40 (1998)CrossRefGoogle Scholar
  48. 48.
    Brittton, G.: UV/visible spectroscopy. In: Britton, G., Liaaen-Jensen, S., Pfander, H. (eds.) Carotenoids. Volume 1B: Spectroscopy, pp. 13–62. Birhäuser Verlag, Basel (1995)Google Scholar
  49. 49.
    Takehara, M., Nishimura, M., Kuwa, T., Inoue, Y., Kitamura, C., Kumagai, T., Honda, M.: Characterization and thermal isomerization of (all-E)lycopene. J. Agric. Food Chem. 62, 264–269 (2014)CrossRefGoogle Scholar
  50. 50.
    Berger, P.D., Maurer, R.E., Celli, G.B.: Experimental Design with Applications in Management, Engineering, and the Sciences, 2 edn. Springer, Cham (2018)Google Scholar
  51. 51.
    Henry, L.K., Catignani, G.L., Schwartz, S.J.: Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans β-carotene. J. Am. Oil Chem. Soc. 75(7), 823–829 (1998)CrossRefGoogle Scholar
  52. 52.
    Lee, M.T., Chen, B.H.: Stability of lycopene during heating and illumination in a model system. Food Chem. 78, 425–432 (2002)CrossRefGoogle Scholar
  53. 53.
    Palma, M., Barbero, G.F., Piñero, Z., Liazid, A., Barroso, C.G., Rostagno, M.A., Prado, J.M., Meireles, M.A.A.: Extraction of natural products: principles and fundamental aspects. In: Rostagno, M. A., Prado, J. M. (eds.) Natural Product Extraction: Principles and Applications, pp. 58–88. The Royal Society of Chemistry, Cambridge (2013)CrossRefGoogle Scholar
  54. 54.
    Strati, I.F., Oreopoulou, V.I.: Recovery of carotenoids from tomato processing by-products—a review. Food Res. Int. 65, 311–321 (2014)CrossRefGoogle Scholar
  55. 55.
    Sala, S., Anton, A., McLaren, S.J., Notarnicola, B., Saouter, E., Sonesson, U.: In quest of reducing the environmental impacts of food production and consumption. J. Clean Prod. 140, 387–398 (2017)CrossRefGoogle Scholar
  56. 56.
    Toma, M., Vinatoru, M., Paniwnyk, L., Mason, T.J.: Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 8(2), 137–142 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of NutritionFederal University of GoiásGoiâniaBrazil
  2. 2.Department of Food ScienceCornell UniversityIthacaUSA
  3. 3.Department of Process Engineering and Applied ScienceDalhousie UniversityHalifaxCanada

Personalised recommendations