Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 10, pp 2783–2800 | Cite as

Scenedesmus Biomass Productivity and Nutrient Removal from Wet Market Wastewater, A Bio-kinetic Study

  • Najeeha ApandiEmail author
  • Radin Maya Saphira Radin MohamedEmail author
  • Adel Al-GheethiEmail author
  • Paran Gani
  • Alfituri Ibrahim
  • Amir Hashim Mohd Kassim
Original Paper

Abstract

The current study aims to investigate the production of microalgae biomass as a function for different wet market wastewater ratios (10, 25, 50, 75 and 100%) and Scenedesmus sp. initial concentrations (104, 105, 106, 107 cells/mL) through the phycoremediation process. The biomass production, total nitrogen (TN), total phosphorus (TP) and total organic compounds (TOC) were determined daily. The pseudo-first order kinetic model was used to measure the potential of Scendesmus sp. in removing nutrients while the Verhulst logistic kinetic model was used to study the growth kinetic. The study revealed that the maximum productivity of Scenedesmus sp. biomass was recorded with 106 cells/mL of the initial concentration in 50% wet market wastewater (98.54 mg/L/day), and the highest removal of TP, TN, and TOC was obtained (85, 90 and 65% respectively). Total protein and lipid contents in the biomass yield produced in the wet market wastewater were more than that in the biomass produced in the BBM (41.7 vs. 37.4 and 23.2 vs. 19.2%, respectively). The results of GC–MS confirmed detection of 44 compounds in the biomass from the wet market wastewater compared to four compounds in the BBM. These compounds have several applications in pharmaceutical and personal care products, chemical industry and antimicrobial activity. These findings indicated the applicability of wet market wastewater as a production medium for microalgae biomass.

Keywords

Pseudo-first order kinetic model Verhulst logistic kinetic model Growth rate Scenedesmus sp. 

Notes

Acknowledgements

This research was funded under EScience Fund Project No. (02-01-13-SF0135) provided by the Ministry of Science, Technology and Innovation, Malaysia (MOSTI).Special thanks to Dr. Hazel Monica Matias-Peralta for providing the microalgae seed and any parties involved in this project specifically Universiti Tun Hussein Onn Malaysia for providing the equipment and research facilities. This paper was also partly sponsored by the Office for Research, Innovation, Commercialization, and Consultancy Management (ORICC) under grant votU682.

References

  1. 1.
    Jais, N.M., Mohamed, R.M.S.R., AL-Gheethi, A.A., Hashim, M.A.: The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol. Environ. Policy 19(1), 37–52 (2017)CrossRefGoogle Scholar
  2. 2.
    Amneera, W.A., Najib, N.W.A.Z., Yusof, S.R.M., Ragunathan, S.: Water quality index of Perlis River, Malaysia. Int. J. Civ. Environ. Eng. 3(2), 1–6 (2013)Google Scholar
  3. 3.
    Gao, X.L., Shao, M.F., Luo, Y., Dong, Y.F., Ouyang, F., Dong, W.Y., Li, J.: Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. Sci. Total Environ. 572, 681–687 (2016)CrossRefGoogle Scholar
  4. 4.
    Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B.M.: Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19(3), 257–275 (2012)CrossRefGoogle Scholar
  5. 5.
    Atiku, H., Mohamed, R.M.S.R., Wurochekke, A.: Bathroom greywater bioremediation by microalgae Botryococcus sp.. Ind. J. Sci. Technol. 9(46), 1–6 (2016)Google Scholar
  6. 6.
    Markou, G., Iconomou, D., Muylaert, K.: Applying raw poultry litter leachate for the cultivation of Arthrospiraplantesis and Chlorella vulgaris. Algal Res. 13, 79–84 (2016)CrossRefGoogle Scholar
  7. 7.
    Markou, G.: Fed-batch cultivation of Arthrospra and Chlorella in ammonia-rich wastewater: optimization of nutrient removal and biomass production. Bioresour. Technol. 193, 35–41 (2015).  https://doi.org/10.1016/j.biortech.215.06.071 CrossRefGoogle Scholar
  8. 8.
    Badwy, M.T., Ibrahim, E.M., Zeinhom, M.M.: Partial replacement of fish meal with dried microalga (Chlorella spp. and Scenedesmus spp.) in Nile Tilapia (Oreochromis niloticus) diets, Int. Symposium on Tilapia in Aquaculture (2008)Google Scholar
  9. 9.
    Mata, T.M., Martins, A.A., Caetano, N.S.: Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14, 217–232 (2009)CrossRefGoogle Scholar
  10. 10.
    Darmaki, A., Govindrajan, A.L., Talebi, S., Al-Rajhi, S., Al Barwnai, T., Bulashi, A.Z.: Cultivation and Characterization of Microalgae for Wastewater Treatment, vol. 1, World Congress on Engineering, London (2012)Google Scholar
  11. 11.
    Vizcaino, J., Lopez, G., Saez, M.I., Jimenez, J.A., Barros, A., Hidalgo, L., Camacho-Rodrigues, J., Martinez, T.F., Ceron-Garcia, M.C., Alarcon, F.J.: Effect of the microalga Scenedesmus almeriensisas fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture (2014)  https://doi.org/10.1016/j.aquaculture.2014.05.010 Google Scholar
  12. 12.
    Ajayan, K.V., Selvaraju, M., Unnikannan, P., Sruthi, P.: Phycoremediation of tannery wastewater using microalgae Scenedemus species, Int. J. Phytoremed. (2015).  https://doi.org/10.1080/15226514.2014.989313 Google Scholar
  13. 13.
    Kim, M.K., Park, J.W., Park, C.S., Kim, S.J., Jeune, K.H., Chang, M.U., Acreman, J.: Enhanced production of Scenedemus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour. Technol. 98, 220–2228 (2007).  https://doi.org/10.1016/j.biortech.2006.08.031 Google Scholar
  14. 14.
    Lu, Q., Zhou, W., Min, M., Ma, X., Chandra, C., Doan, Y.T.T., Ma, Y., Zheng, H., Cheng, S., Griffith, R., Chen, P., Chen, C., Urriola, P.E., Shurson, G.C., Gislerod, H.R., Ruan, R.: Growing Chorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresour. Technol. 198, 189–197 (2015).  https://doi.org/10.1016/j.biotech.2015.08.133 CrossRefGoogle Scholar
  15. 15.
    APHA.: (2012). Standard Methods for the Examination of Water and Wastewater, American Public Health Association, AWWA (American Water Works Association, Washington, D.C.Google Scholar
  16. 16.
    Nichols, H., Bold, H.: Growth media. In: Jr, S., Hand, B. (ed.) Physiol Methods, pp. 7–24. Cambridge University Press, Cambridge (1965)Google Scholar
  17. 17.
    Ruiz, J., Arbib, Z., Alvarez-Diaz, P., Gariddo-Perez, C., Barragan, J., Perales, J.A.: Photobiotreatment model (PhBT): a kinetic model for microalgae biomass growth and nutrient removal in wastewater. Environ. Technol. 34, 979–991 (2013).  https://doi.org/10.1080/0959330.2012.724451 CrossRefGoogle Scholar
  18. 18.
    Lin, J., Lee, S.,-M., Lee, H.I., Koo, Y.,-M.: Modelling of typical microbial cell growth in batch culture. Biotechnol. Bioprocess. Eng. 5, 382–385 (2000).  https://doi.org/10.1007/BF02942217 CrossRefGoogle Scholar
  19. 19.
    Zwietering, M.H., Jongenburger, I., ROmbouts, F.M., van’rRiet, K.: Modelling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1881–1975 (1990).  https://doi.org/10.1111/j.1472-765X.2008.02537 Google Scholar
  20. 20.
    Gani, P., Sunar, N.M., Matias-Peralta, H., Jamaian, S.S., Latif, A.A.A.: Effect of different culture conditions on the phycoremediation efficiency of domestic wastewater. J. Environ. Chem. Eng. 4, 4744–4753 (2016).  https://doi.org/10.1016/j.jece.2016.11.008 CrossRefGoogle Scholar
  21. 21.
    Arbib, Z., Ruiz, J., Alvarez-Diaz, P., Gariddo-Perez, C., Perates, J.A.: Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res. 49, 465–474 (2014).  https://doi.org/10.1016/j.watres.2013.10.036 CrossRefGoogle Scholar
  22. 22.
    Mamun, A., Amid, A., AbdKarim, I., Alam, Z., Abu Sayem, S.M.: Phytoremediation and mathematical model for domestic wastewater by Chlorella vulgaris. Adv. Environ. Biol. 9, 139–144 (2015)Google Scholar
  23. 23.
    A.O.A.C Association of Official Analytical Chemists.: Official Methods of Analysis, 18th edn., Association of Official Analytical Chemists, Washington, D.C. (2005)Google Scholar
  24. 24.
    Bligh, E.G., Dyer, W.J.: A rapid method of lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)CrossRefGoogle Scholar
  25. 25.
    Folch, A.L.S.: A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957)Google Scholar
  26. 26.
    Jais, N.M., Mohamed, R.M.S.R., Apandi, W.A.W.M., Matias-Peralta, H.: Removal of nutirents and selected heavy metals in wet market wastewater by using microalgae Scenedesmus sp.. Appl. Mech. Mater. 773–774, 1210–1214 (2015)CrossRefGoogle Scholar
  27. 27.
    Zulkifli, A.R., Roshadah, H., TunkuKhalkausar, T.F.: Control of Water Pollution from Nonindustrial Premises. Department of Environment, Putrajaya (2011)Google Scholar
  28. 28.
    Apandi, N., Mohamed., R.M.S.R., Latiffi, N.A.A., Roslan, N.F.M., Al-Gheethi, A.A.S.: Protein and lipid content in biomass from microalgae Scenedesmus sp. grown in wet market wastewater. MATEC Web Conf. 103, 06011 (2017).  https://doi.org/10.1051/matecconf/201710306011 CrossRefGoogle Scholar
  29. 29.
    Juneja, A., Ceballos, R.M., Murthy, G.S.: Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9), 4607–4638 (2013)CrossRefGoogle Scholar
  30. 30.
    Whitton, R., Le Mevel, A., Pidou, M., Ometto, F., Villa, R., Jefferson, B.: Influence of microalgae N and P composition on wastewater nutrient remediation. Water Res. 91, 371–378 (2016).  https://doi.org/10.1016/j.watres.2015.12.054 CrossRefGoogle Scholar
  31. 31.
    Kuo, C.M., Chen, T.Y., Lin, T.H., Kao, C.Y., Lai, J.T., Chang, J.S., Lin, C.S.: Cultivation of Chlorella sp. GC using piggery wastewater for biomass and lipid production. Bioresour. Technol. 194, 326–333 (2015).  https://doi.org/10.1016/j.biortech.2015.07.026 CrossRefGoogle Scholar
  32. 32.
    Abou-Shanab, R.A.I., Ji, M., Kim, H., Paeng, K., Jeon, B.: Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J. Environ. Manag. 115, 257–264 (2013)CrossRefGoogle Scholar
  33. 33.
    Hena, S., Fatimah, S., Tabassum, S.: Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour. Ind. 10, 1–14 (2015).  https://doi.org/10.1016/j.wri.2015.02.002 CrossRefGoogle Scholar
  34. 34.
    Shen, Q.H., Jiang, J.W., Chen, L.P., Cheng, L.H., Xu, X.H., Chen, H.L.: Effect of carbon source on biomass growth and nutrients removal of Scenedesmusobliquus for wastewater advanced treatment and lipid production, Bioresour. Technol. (2015),  https://doi.org/10.1016/j.biortech.2015.04.053 Google Scholar
  35. 35.
    Ji, M.K., Yun, H.S., Park, Y.T., Kabra, A.N., Oh, I.H., Choi, J.: Mixotrophic cultivation of a microalgae Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J. Environ. Manag. 159, 115–120 (2015)CrossRefGoogle Scholar
  36. 36.
    Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S.: Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol. 99, 3389–3396 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil and Environmental EngineeringUniversiti Tun Hussein Onn MalaysiaParit Raja, Batu PahatMalaysia

Personalised recommendations