Waste and Biomass Valorization

, Volume 10, Issue 10, pp 3057–3069 | Cite as

An Alternative to the Cymenes Production from Scrap Tire Rubber Using Heteropolyacid Catalysts

  • Claudia Tavera-Ruiz
  • Paola Gauthier-MaradeiEmail author
  • Mickaël Capron
  • Deyanira Ferreira-Beltran
  • Cristian Palencia-Blanco
  • Jean-Charles Morin
  • Franck Dumeignil
Original Paper


The catalytic reforming of pyrolytic oil comes from scrap tires rubber (STR) was studied using as catalyst three different heteropolyacids (HPA) supported on commercial silica (CARiACT Q-10); H3PW12O40 (HPW), H3PMo12O40 (HPMo) and H4PMo11VO40 (HPMoV). A specify attention was given to influence of acidity of catalysts (i.e. strength and acid site types i.e. Lewis and/or Brønsted) on the concentration of cymenes in the pyrolytic oil. The catalytic performance was evaluated in a fixed bed reactor at laboratory-scale equipped with two independent thermal zones; in the first, the STR pyrolysis takes place to produce volatile compounds which, consequently, were transformed in a catalytic zone. The resulting pyrolysis oil in each test was collected in two cooling traps and characterized by GC-MS and GC-FID for the identification and quantification of all aromatic compounds. The results showed a decrease on the pyrolytic oil yield when HPA based catalysts were used, which seems to be promoted by an higher number of Brønsted sites. It has reached an increase in the aromatic concentration, compared to the test without catalyst, of up to 140% for the Molybdenum-based catalysts and close to 89% for the Tungsten-based catalyst. The major compounds obtained were cymenes and its production was closely associated to the type and strength of acid sites. Thus, the highest amount of cymenes (mainly p-cymene) was obtained with the highest number of Lewis sites and the highest ratio of Lewis/Brønsted acid sites, i.e. Molybdenum-based catalysts. On the contrary, the lowest yields were obtained when the Tungsten-based catalyst was used associated to its higher number of Brønsted acid sites and its strong acidity that promote the cracking reactions.


Waste valorization Pyrolysis Heteropolyacids supported catalysts Aromatics compounds Limonene 



The authors are grateful to the Vicerrectoría de Investigación y Extensión from Universidad Industrial de Santander (Project No. 1843), to Unité de Catalyse et Chimie du Solide UCCS, Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur et de la Recherche, Région Nord—Pas de Calais and FEDER for supporting and funding partially this work. Tavera is grateful to Colciencias for the Ph.D. scholarship and Universidad Industrial de Santander for the financing through the program of doctoral support (Project No. 1858). An especial grateful is given to B. Katryniok for his technical support in the preparation of catalysts.


  1. 1.
    Arabiourrutia, M., Lopez, G., Elordi, G., Olazar, M., Aguado, R., Bilbao, J.: Product distribution obtained in the pyrolysis of tyres in a conical spouted bed reactor. Chem. Eng. Sci. 62, 5271–5275 (2007)CrossRefGoogle Scholar
  2. 2.
    Hita, I., Arabiourrutia, M., Olazar, M., Bilbao, J., Arandes, J.M., Castaño Sánchez, P.: Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renew. Sustain. Energy Rev. 56, 745–759 (2016)CrossRefGoogle Scholar
  3. 3.
    Tang, Y., Curtis, C.W.: Thermal and catalytic coprocessing of Illinois No. 6. coal with model and commingled waste plastics. Fuel Process. Technol. 49, 91–117 (1996)CrossRefGoogle Scholar
  4. 4.
    Saraf, S., Marsh, J.A., Cha, C.Y., Guffey, F.D.: Reactive coprocessing of scrap tires and heavy oil. Resour. Conserv. Recycl. 13, 1–13 (1995)CrossRefGoogle Scholar
  5. 5.
    Narobe, M., Golob, J., Klinar, D., Francetič, V., Likozar, B.: Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances. Bioresour. Technol. 162, 21–29 (2014)CrossRefGoogle Scholar
  6. 6.
    Pipilikaki, P., Katsioti, M., Papageorgiou, D., Fragoulis, D., Chaniotakis, E.: Use of tire derived fuel in clinker burning. Cem. Concr. Compos. 27, 843–847 (2005)CrossRefGoogle Scholar
  7. 7.
    Acosta, R., Tavera, C., Gauthier-Maradei, P., Nabarlatz, D.: Production of oil and char by intermediate pyrolysis of scrap tyres: influence on yield and product characteristics. Int. J. Chem. React. Eng. 13, 189–200 (2015)Google Scholar
  8. 8.
    Kyari, M., Cunliffe, A., Williams, P.T.: Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires. Energy Fuels. 19, 1165–1173 (2005)CrossRefGoogle Scholar
  9. 9.
    Rofiqul Islam, M., Haniu, H., Rafiqul Alam Beg, M.: Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: product yields, compositions and related properties. Fuel 87, 3112–3122 (2008)CrossRefGoogle Scholar
  10. 10.
    Girods, P., Rogaume, Y., Dufour, A., Rogaume, C., Zoulalian, A.: Low-temperature pyrolysis of wood waste containing urea-formaldehyde resin. Renew. Energy 33, 648–654 (2008)CrossRefGoogle Scholar
  11. 11.
    Martínez, J.D., Puy, N., Murillo, R., García, T., Navarro, M.V., Mastral, A.M.: Waste tyre pyrolysis—a review. Renew. Sustain. Energy Rev. 23, 179–213 (2013)CrossRefGoogle Scholar
  12. 12.
    Williams, P.T., Brindle, A.J.: Catalytic pyrolysis of tyres: influence of catalyst temperature. Fuel 81, 2425–2434 (2002)CrossRefGoogle Scholar
  13. 13.
    Williams, P.T., Brindle, A.J.: Aromatic chemicals from the catalytic pyrolysis of scrap tyres. J. Anal. Appl. Pyrolysis. 67, 143–164 (2003)CrossRefGoogle Scholar
  14. 14.
    Boxiong, S., Chunfei, W., Cai, L., Binbin, G., Rui, W.: Pyrolysis of waste tyres: the influence of USY catalyst/tyre ratio on products. J. Anal. Appl. Pyrolysis. 78, 243–249 (2007)CrossRefGoogle Scholar
  15. 15.
    Boxiong, S., Chunfei, W., Binbin, G., Rui, W.: Liangcai: pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts. Appl. Catal. B 73, 150–157 (2007)CrossRefGoogle Scholar
  16. 16.
    Olazar, M., Aguado, R., Arabiourrutia, M., Lopez, G., Barona, A., Bilbao, J.: Catalyst effect on the composition of tire pyrolysis products. Energy Fuels. 22, 2909–2916 (2008)CrossRefGoogle Scholar
  17. 17.
    Olazar, M., Arabiourrutia, M., Lôpez, G., Aguado, R., Bilbao, J.: Effect of acid catalysts on scrap tyre pyrolysis under fast heating conditions. J. Anal. Appl. Pyrolysis. 82, 199–204 (2008)CrossRefGoogle Scholar
  18. 18.
    Arabiourrutia, M., López, G., Aguado, R., Olazar, M.: Efecto del uso de catalizadores ácidos sobre la distribución de productos en la pirólisis de neumáticos. Inf. Tecnol. 21, 33–41 (2010)CrossRefGoogle Scholar
  19. 19.
    Ding, K., Zhong, Z., Zhang, B., Wang, J., Min, A., Ruan, R.: Catalytic pyrolysis of waste tire to produce valuable aromatic hydrocarbons: an analytical Py-GC/MS study. J. Anal. Appl. Pyrolysis. 122, 55–63 (2016)CrossRefGoogle Scholar
  20. 20.
    Qu, W., Zhou, Q., Wang, Y.Z., Zhang, J., Lan, W.W., Wu, Y.H., Yang, J.W., Wang, D.Z.: Pyrolysis of waste tire on ZSM-5 zeolite with enhanced catalytic activities. Polym. Degrad. Stab. 91, 2389–2395 (2006)CrossRefGoogle Scholar
  21. 21.
    Li, W., Huang, C., Li, D., Huo, P., Wang, M., Han, L., Chen, G., Li, H., Li, X., Wang, Y., Wang, M.: Derived oil production by catalytic pyrolysis of scrap tires. Chin. J. Catal. 37, 526–531 (2016)CrossRefGoogle Scholar
  22. 22.
    Li, W., Huang, C., Li, D., Huo, P., Wang, M., Han, L., Chen, G., Li, H., Li, X., Wang, Y., Wang, M.: Derived oil production by catalytic pyrolysis of scrap tires. Chin. J. Catal. 35, 108–119 (2014)CrossRefGoogle Scholar
  23. 23.
    Quek, A., Balasubramanian, R.: Liquefaction of waste tires by pyrolysis for oil and chemicals—a review. J. Anal. Appl. Pyrolysis. 101, 1–16 (2013)CrossRefGoogle Scholar
  24. 24.
    Vichaphund, S., Aht-ong, D., Sricharoenchaikul, V., Atong, D.: Effect of CV-ZSM-5, Ni-ZSM-5 and FA-ZSM-5 catalysts for selective aromatic formation from pyrolytic vapors of rubber wastes. J. Anal. Appl. Pyrolysis. 124, 733–741 (2017)CrossRefGoogle Scholar
  25. 25.
    Namchot, W., Jitkarnka, S.: Impacts of nickel supported on different zeolites on waste tire-derived oil and formation of some petrochemicals. J. Anal. Appl. Pyrolysis. 118, 86–97 (2016)CrossRefGoogle Scholar
  26. 26.
    Muenpol, S., Jitkarnka, S.: Effects of Fe supported on zeolites on structures of hydrocarbon compounds and petrochemicals in waste tire-derived pyrolysis oils. J. Anal. Appl. Pyrolysis. 117, 147–156 (2016)CrossRefGoogle Scholar
  27. 27.
    Hita, I., Cordero-Lanzac, T., Gallardo, A., Arandes, J.M., Rodríguez-Mirasol, J., Bilbao, J., Cordero, T., Castaño, P.: Phosphorus-containing activated carbon as acid support in a bifunctional Pt-Pd catalyst for tire oil hydrocracking. Catal. Commun. 78, 48–51 (2016)CrossRefGoogle Scholar
  28. 28.
    He, Z., Jiao, Q., Fang, Z., Li, T., Feng, C., Li, H.: Light olefin production from catalytic pyrolysis of waste tires using nano-HZSM-5/γ-Al2O3 catalysts. J. Anal. Appl. Pyrolysis. 129, 66–71 (2018)CrossRefGoogle Scholar
  29. 29.
    Dũng, N.A., Klaewkla, R., Wongkasemjit, S., Jitkarnka, S.: Light olefins and light oil production from catalytic pyrolysis of waste tire. J. Anal. Appl. Pyrolysis. 86, 281–286 (2009)CrossRefGoogle Scholar
  30. 30.
    Dũng, N.A., Tanglumlert, W., Wongkasemjit, S., Jitkarnka, S.: Roles of ruthenium on catalytic pyrolysis of waste tire and the changes of its activity upon the rate of calcination. J. Anal. Appl. Pyrolysis. 87, 256–262 (2010)CrossRefGoogle Scholar
  31. 31.
    Dũng, N.A., Wongkasemjit, S., Jitkarnka, S.: Effects of pyrolysis temperature and Pt-loaded catalysts on polar-aromatic content in tire-derived oil. Appl. Catal. B 91, 300–307 (2009)CrossRefGoogle Scholar
  32. 32.
    Martín-Luengo, M.A., Yates, M., Martínez Domingo, M.J., Casal, B., Iglesias, M., Esteban, M., Ruiz-Hitzky, E.: Synthesis of p-cymene from limonene, a renewable feedstock. Appl. Catal. B 81, 218–224 (2008)CrossRefGoogle Scholar
  33. 33.
    Du, J., Xu, H., Shen, J., Huang, J., Shen, W., Zhao, D.: Catalytic dehydrogenation and cracking of industrial dipentene over M/SBA-15 (M = Al, Zn) catalysts. Appl. Catal. A Gen. 296, 186–193 (2005)CrossRefGoogle Scholar
  34. 34.
    Danon, B., Van Der Gryp, P., Schwarz, C.E., Görgens, J.F.: A review of dipentene (dl-limonene) production from waste tire pyrolysis. J. Anal. Appl. Pyrolysis. 112, 1–13 (2015)CrossRefGoogle Scholar
  35. 35.
    Kan, T., Strezov, V., Evans, T.: Fuel production from pyrolysis of natural and synthetic rubbers. Fuel. 191, 403–410 (2017)CrossRefGoogle Scholar
  36. 36.
    Knözinger, H., Kochloefl, K.: Heterogeneous catalysis and solid catalysts. Ullmann’s Encycl. Ind. Chem. 1, 2–110 (2009)Google Scholar
  37. 37.
    Misono, M., Okuhara, T., Mizuno, N.: Catalysis by heteropoly compounds. Stud. Surf. Sci. Catal. 44, 267–278 (1989)CrossRefGoogle Scholar
  38. 38.
    Kale, S.S., Armbruster, U., Eckelt, R., Bentrup, U., Umbarkar, S.B., Dongare, M.K., Martin, A.: Understanding the role of Keggin type heteropolyacid catalysts for glycerol acetylation using toluene as an entrainer. Appl. Catal. A 527, 9–18 (2016)CrossRefGoogle Scholar
  39. 39.
    Atia, H., Armbruster, U., Martin, A.: Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J. Catal. 258, 71–82 (2008)CrossRefGoogle Scholar
  40. 40.
    Ucar, S., Karagoz, S., Ozkan, A.R., Yanik, J.: Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel 84, 1884–1892 (2005)CrossRefGoogle Scholar
  41. 41.
    Ressler, T., Dorn, U., Walter, A., Schwarz, S., Hahn, A.H.P.: Structure and properties of PVMo11O40 heteropolyoxomolybdate supported on silica SBA-15 as selective oxidation catalyst. J. Catal. 275, 1–10 (2010)CrossRefGoogle Scholar
  42. 42.
    Katryniok, B., Paul, S., Capron, M., Lancelot, C., Bellière-Bacca, V., Rey, P., Dumeignil, F.: A long-life catalyst for glycerol dehydration to acrolein. Green Chem. 2, 1922–1925 (2010)CrossRefGoogle Scholar
  43. 43.
    Tamura, M., Shimizu, K., Satsuma, A.: Comprehensive IR study on acid/base properties of metal oxides. Appl. Catal. A 433–434, 135–145 (2012)CrossRefGoogle Scholar
  44. 44.
    Katritzky, A.R., Ignatchenko, E.S., Barcock, R.A., Lobanov, V.S.: Prediction of gas chromatographic retention times and response factors using a general quantitative structure-property relationship treatment. Anal. Chem. 6, 1799–1807 (1994)CrossRefGoogle Scholar
  45. 45.
    Scanlon, J.T., Willis, D.E.: Calculation of flame ionization detector relative response factors using the effective carbon number concept. J. Chromatogr. Sci. 23, 333–340 (1985)CrossRefGoogle Scholar
  46. 46.
    Viswanadham, B., Srikanth, A., Chary, K.V.R.: Characterization and reactivity of 11-molybdo-1-vanadophosphoric acid catalyst supported on zirconia for dehydration of glycerol to acrolein. J. Chem. Sci. 126, 445–454 (2014)CrossRefGoogle Scholar
  47. 47.
    Méndez, F.J., Llanos, A., Echeverría, M., Jáuregui, R., Villasana, Y., Díaz, Y., Liendo-Polanco, G., Ramos-García, M.A., Zoltan, T., Brito, J.L.: Mesoporous catalysts based on Keggin-type heteropolyacids supported on MCM-41 and their application in thiophene hydrodesulfurization. Fuel. 110, 249–258 (2013)CrossRefGoogle Scholar
  48. 48.
    Han, X., Yan, W., Chen, K., Hung, C.T., Liu, L.L., Wu, P.H., Huang, S.J., Liu, S.B.: Heteropolyacid-based ionic liquids as effective catalysts for the synthesis of benzaldehyde glycol acetal. Appl. Catal. A 485, 149–156 (2014)CrossRefGoogle Scholar
  49. 49.
    Yi, X.: Encapsulation d’hétéropolyacides de type Keggin et de Keplerate de type polyoxomolybdate {Mo132} pour la catalyse hétérogène en phase liquide,, (2016)
  50. 50.
    Predoeva, A., Damyanova, S., Gaigneaux, E.M., Petrov, L.: The surface and catalytic properties of titania-supported mixed PMoV heteropoly compounds for total oxidation of chlorobenzene. Appl. Catal. A 319, 14–24 (2007)CrossRefGoogle Scholar
  51. 51.
    Ji, H., Sun, J., Wu, P., Dai, B., Chao, Y., Zhang, M., Jiang, W., Zhu, W., Li, H.: Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst. J. Mol. Catal. A 423, 207–215 (2016)CrossRefGoogle Scholar
  52. 52.
    Carriazo, D., Domingo, C., Martín, C., Rives, V.: PMo or PW heteropoly acids supported on MCM-41 silica nanoparticles: characterisation and FT-IR study of the adsorption of 2-butanol. J. Solid State Chem. 181, 2046–2057 (2008)CrossRefGoogle Scholar
  53. 53.
    Xu, B., Sievers, C., Hong, S.B., Prins, R., van Bokhoven, J.A.: Catalytic activity of Brønsted acid sites in zeolites: intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. J. Catal. 244, 163–168 (2006)CrossRefGoogle Scholar
  54. 54.
    Gauthier-Maradei, P., Cely Valderrama, Y., Nabarlatz, D.: Mathematical model of scrap tire rubber pyrolysis in a non-isothermal fixed bed reactor: definition of a chemical mechanism and determination of kinetic parameters. Waste Biomass Valor. (2017). Google Scholar
  55. 55.
    Cypres, R.: Aromatics hydrocarbons formation during coal pyrolysis. Fuel Process. Technol. 15, 1–15 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.INTERFASE, Escuela de Ingeniería Química, Universidad Industrial de SantanderBucaramangaColombia
  2. 2.Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du SolideLilleFrance

Personalised recommendations