Waste and Biomass Valorization

, Volume 10, Issue 10, pp 2975–2984 | Cite as

Artichoke Waste as a Source of Phenolic Antioxidants and Bioenergy

  • Roberto LavecchiaEmail author
  • Gianluca Maffei
  • Federica Paccassoni
  • Luigi Piga
  • Antonio Zuorro
Original Paper


The thermal properties of artichoke waste, a relatively rich source of phenolic antioxidants, were investigated before and after phenolic recovery in order to assess its suitability as a source of bioproducts and bioenergy. The two main fractions of the waste, the bracts and the stems, were submitted to solvent extraction with aqueous ethanol (0, 50, 100% v/v) and the resulting extracts were assayed for total phenolics, flavonoids and antioxidant activity. The polyphenol content of stems was 51.10 ± 0.74 mg GAE/g and that of bracts was 24.58 ± 0.57 mg GAE/g. Using 50% aqueous ethanol provided the highest extraction yields, with over 80% of phenolic compounds recovered. The higher heating value of artichoke waste was about 16 MJ/kg and changed very little after polyphenol extraction. The ash content of the two waste fractions was close to 5% (w/w) and was further reduced upon phenolic recovery. The elemental ash composition for the two fractions was very similar: silicon was the most abundant element (> 40% w/w) followed by phosphorus, calcium and potassium. Finally, TGA/DTG analysis showed no significant differences in the thermal properties of the extracted and unextracted materials, suggesting the possibility of recovering phenolic antioxidants from artichoke waste and bioenergy from the extraction residue. This could provide economic advantages to the artichoke industry and reduce its environmental impact.


Artichoke waste Polyphenol recovery Biomass Bioenergy Thermal properties Thermogravimetry 


  1. 1.
    Pandino, G., Lombardo, S., Mauromicale, G., Williamson, G.: Characterization of phenolic acids and flavonoids in leaves stems, bracts and edible parts of globe artichokes. Acta Hortic. 942, 413–417 (2012)CrossRefGoogle Scholar
  2. 2.
    FAOSTAT: Food and agricultural commodities production. Final 2013 data, (2013)
  3. 3.
    Gaafar, A.A., Salama, Z.A.: Phenolic compounds from artichoke (Cynara scolymus L.) byproducts and their antimicrobial activities. J. Biol. Agric. Healthc. 3(12), 1–7 (2013)Google Scholar
  4. 4.
    Santo Domingo, C., Soria, M., Rojas, A.M., Fissore, E.N., Gerschenson, L.N.: Protease and hemicellulase assisted extraction of dietary fiber from wastes of Cynara cardunculus. Int. J. Mol. Sci. 16, 6057–6075 (2015)CrossRefGoogle Scholar
  5. 5.
    Machado, M.T.C., Ec, K.S., Vieira, G.S., Menegalli, F.C., Martínez, J., Hubinger, M.D.: Prebiotic oligosaccharides from artichoke industrial waste: evaluation of different extraction methods. Ind. Crop Prod. 76, 141–148 (2015)CrossRefGoogle Scholar
  6. 6.
    Pandino, G., Lombardo, S., Mauromicale, G.: Globe artichoke leaves and floral stems as a source of bioactive compounds. Ind. Crop Prod. 44, 44–49 (2013)CrossRefGoogle Scholar
  7. 7.
    Lattanzio, V., Kroon, P.A., Linsalata, V., Cardinali, A.: Globe artichoke: a functional food and source of nutraceutical ingredients. J. Funct. Food 1, 131–134 (2009)CrossRefGoogle Scholar
  8. 8.
    Lombardo, S., Pandino, G., Mauromicale, G., Knödler, M., Carle, R., Schieber, A.: Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem. 119, 1175–1181 (2010)CrossRefGoogle Scholar
  9. 9.
    Rouphael, Y., Bernardi, J., Cardarelli, M., Bernardo, L., Kane, D., Colla, G., Lucini, L.: Phenolic compounds and sesquiterpene lactones profile in leaves of nineteen artichoke cultivars. J. Agric. Food Chem. 16, 8540–8548 (2016)CrossRefGoogle Scholar
  10. 10.
    Rouphael, Y., Colla, G., Graziani, G., Ritieni, A., Cardarelli, M., De Pascale, S.: Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chem. 234, 10–19 (2017)CrossRefGoogle Scholar
  11. 11.
    Colla, G., Rouphael, Y., Cardarelli, M., Svecova, E., Rea, E., Lucini, L.: Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 93, 1119–1127 (2013)CrossRefGoogle Scholar
  12. 12.
    Negro, D., Montesano, V., Grieco, S., Crupi, P., Sarli, G., De Lisi, A., Sonnante, G.: Polyphenol compounds in artichoke plant tissues and varieties. J. Food Sci. 77, C244–C252 (2012)CrossRefGoogle Scholar
  13. 13.
    Kuczmannová, A., Gál, P., Varinská, L., Treml, J., Ková, I., Novotný, M., Vasilenko, T., Dall’Acqua, S., Nagy, M., Mucaji, P.: Agrimonia eupatoria L. and Cynara cardunculus L. water infusions: phenolic profile and comparison of antioxidant activities. Molecules 20, 20538–20550 (2015)CrossRefGoogle Scholar
  14. 14.
    Afifi, N., Ramadan, A., Yassin, N.Z., Fayed, H.M., Abdel-Rahman, R.F.: Molecular mechanisms underlying hepatoprotective effect of artichoke extract: modulates TNF-induced activation of nuclear transcription factor (NF-Kappa β) and oxidative burst inhibition. World J. Pharm. Pharm. Sci. 4, 1546–1562 (2016)Google Scholar
  15. 15.
    Mohamed, S.H., Ahmed, H.H., Farrag, A.R.H., Abdel-Azim, N.S., Shahat, A.A.: Cynara scolymus for relieving on nonalcoholic steatohepatitis induced in rats. Int. J. Pharm. Pharm. Sci. 5, 57–66 (2013)Google Scholar
  16. 16.
    Chemat, F., Vian, M.A., Cravotto, G.: Green extraction of natural products: concept and principles. Int. J. Mol. Sci. 13, 8615–8627 (2012)CrossRefGoogle Scholar
  17. 17.
    Zuorro, A.: Response surface methodology analysis of polyphenol recovery from artichoke waste. Am. J. Appl. Sci. 11, 1463–1471 (2014)CrossRefGoogle Scholar
  18. 18.
    Zuorro, A., Maffei, G., Lavecchia, R.: Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 111, 279–284 (2016)CrossRefGoogle Scholar
  19. 19.
    Lavecchia, R., Zuorro, A.: Evaluation of olive pomace as a source of phenolic antioxidants for the production of functional cosmetics. Int. J. Appl. Eng. Res. 14, 34405–34409 (2015)Google Scholar
  20. 20.
    Zuorro, A., Lavecchia, R.: Spent coffee grounds as a valuable source of phenolic compounds and bioenergy. J. Clean. Prod. 34, 49–56 (2012)CrossRefGoogle Scholar
  21. 21.
    Zhishen, J., Mengcheng, T., Jianming, W.: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559 (1999)CrossRefGoogle Scholar
  22. 22.
    Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30 (1995)CrossRefGoogle Scholar
  23. 23.
    Conde, E., Cara, C., Moure, A., Ruiz, E., Castro, E., Domínguez, H.: Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem 114, 806–812 (2009)CrossRefGoogle Scholar
  24. 24.
    Fiore, V., Valenza, A., Di Bella, G.: Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Compos. Sci. Technol. 71, 1138–1144 (2011)CrossRefGoogle Scholar
  25. 25.
    Peres, R.S., Armelin, E., Alemán, C., Ferreira, C.A.: Modified tannin extracted from black wattle tree as an environmentally friendly antifouling pigment. Ind. Crop Prod. 65, 506–514 (2015)CrossRefGoogle Scholar
  26. 26.
    Cheng, D., Jiang, S., Zhang, Q.: Effect of hydrothermal treatment with different aqueous solutions on the mold resistance of bamboo with chemical and FTIR analysis. Bioresources 8(1), 371–382 (2013)Google Scholar
  27. 27.
    Kyraleou, M., Pappas, C., Voskidi, E., Kotseridis, Y., Basalekou, M., Tarantilis, P.A., Kallithraka, S.: Diffuse reflectance Fourier transform infrared spectroscopy for simultaneous quantification of total phenolics and condensed tannins contained in grape seeds. Ind. Crop Prod. 74, 784–791 (2015)CrossRefGoogle Scholar
  28. 28.
    Liang, N., Lu, X., Hu, Y., Kitts, D.D.: Application of attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy to determine the chlorogenic acid isomer profile and antioxidant capacity of coffee beans. J. Agric. Food Chem. 64, 681–689 (2016)CrossRefGoogle Scholar
  29. 29.
    Tortosa Masiá, A.A., Buhre, B.J.P., Gupta, R.P., Wall, T.F.: Characterising ash of biomass and waste. Fuel Process. Technol. 88, 1071–1081 (2007)CrossRefGoogle Scholar
  30. 30.
    García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Characterization of Spanish biomass wastes for energy use. Biorersour. Technol. 103, 249–258 (2012)CrossRefGoogle Scholar
  31. 31.
    Lutz, M., Henriquez, C., Escobar, R.: Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. J. Food Compos. Anal. 24, 49–54 (2011)CrossRefGoogle Scholar
  32. 32.
    Ledda, L., Deligios, P.A., Farci, R., Sulas, L.: Biomass supply for energetic purposes from some Cardueae species grown in Mediterranean farming systems. Ind. Crop Prod. 47, 218–226 (2013)CrossRefGoogle Scholar
  33. 33.
    Mackenzie, R.C.: Differential thermal analysis, vol. 2. Academic press, New York (1972)Google Scholar
  34. 34.
    Zuorro, A., Maffei, G., Lavecchia, R.: Effect of solvent type and extraction conditions on the recovery of phenolic compounds from artichoke waste. Chem. Eng. Trans. 39, 463–468 (2014)Google Scholar
  35. 35.
    Pandino, G., Lombardo, S., Mauromicale, G., Williamson, G.: Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. J. Food Compos. Anal. 24, 148–153 (2011)CrossRefGoogle Scholar
  36. 36.
    Dabbou, S., Dabbou, S., Flamini, G., Pandino, G., Gasco, L., Helal, A.N.: Phytochemical compounds from the crop byproducts of Tunisian globe artichoke cultivars. Chem. Biodivers. 13, 1475–1483 (2016)CrossRefGoogle Scholar
  37. 37.
    Zuorro, A.: Optimization of polyphenol recovery from espresso coffee residues using factorial design and response surface methodology. Sep. Purif. Technol. 152, 64–69 (2015)CrossRefGoogle Scholar
  38. 38.
    Damartzis, T., Vamvuka, D., Sfakiotakis, S., Zabaniotou, A.: Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour. Technol. 102, 6230–6238 (2011)CrossRefGoogle Scholar
  39. 39.
    Femenia, A., Robertson, J.A., Waldron, K.W., Selvendran, R.R.: Cauliflower (Brassica oleracea L.), globe artichoke (Cynara scolymus) and chicory witloof (Cichorium intybus) processing by-products as sources of dietary fibre. J. Sci. Food Agric. 77, 511–518 (1998)CrossRefGoogle Scholar
  40. 40.
    Meng, A., Chen, S., Long, Y., Zhou, H., Zhang, Y., Li, Q.: Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Manage. 46, 247–256 (2015)CrossRefGoogle Scholar
  41. 41.
    Doshi, P., Srivastava, G., Pathak, G., Dikshit, M.: Physicochemical and thermal characterization of nonedible oilseed residual waste as sustainable solid biofuel. Waste Manage. 34, 1836–1846 (2014)CrossRefGoogle Scholar
  42. 42.
    Vamvuka, D., Sfakiotakis, S.: Combustion behavior of biomass fuels and their blends with lignite. Thermochim. Acta 526, 192–199 (2011)CrossRefGoogle Scholar
  43. 43.
    Wildschut, J., Smit, A.T., Reith, J.H., Huijgen, W.J.J.: Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour. Technol. 135, 58–66 (2013)CrossRefGoogle Scholar
  44. 44.
    Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S.: A review on biomass as a fuel for boilers. Renew. Sust. Energ. Rev. 15, 2262–2289 (2011)CrossRefGoogle Scholar
  45. 45.
    Nzihou, A., Stanmore, B.R.: The formation of aerosols during the co-combustion of coal and biomass. Waste Biomass Valor. 6, 947–957 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Roberto Lavecchia
    • 1
    Email author
  • Gianluca Maffei
    • 1
  • Federica Paccassoni
    • 1
  • Luigi Piga
    • 1
  • Antonio Zuorro
    • 1
  1. 1.Department of Chemical Engineering, Materials and EnvironmentSapienza UniversityRomeItaly

Personalised recommendations