Waste and Biomass Valorization

, Volume 10, Issue 10, pp 3037–3044 | Cite as

Recovery of Nano-TiO2 from Spent SCR Catalyst by Sulfuric Acid Dissolution and Direct Precipitation

  • Benteng Ma
  • Zhaofu QiuEmail author
  • Ji Yang
  • Chuanhui Qin
  • Jialu Fan
  • Aosong Wei
  • Yejin Li
Original Paper


In this study, a novel method for recovering nano-TiO2 from spent selective catalytic reduction catalysts was developed. First, the components in the catalyst were converted into soluble and insoluble compounds by sodium roasting (650 °C), and the optimal mass ratio of m(Na2CO3):m(catalyst) was 3:1. The insoluble fraction was leached within 3 h at 80 °C using a suitable concentration and amount of dilute sulfuric acid. A Ti leaching rate of 97.5% was obtained with repeated leaching in 3.73 mol L−1 sulfuric acid at an acid/catalyst ratio of 30:1. Finally, the pH of the titanium-rich acid solution was slowly adjusted to neutral by adding Na2CO3 to obtain metatitanic acid particles suspended in the solution. The TiO2 particles can be obtained by freeze-drying and roasting the precipitate at 600 °C for 3 h, and the product is anatase-TiO2 and a small amount of rutile-TiO2. This method is feasibility, operability, simple condition control and high product value.


Spent SCR catalyst Recovery Titanium Hydrometallurgy Nano-TiO2 


  1. 1.
    Pudasainee, D., Lee, S.J., Lee, S.H., Kim, J.H., Jang, H.N., Cho, S.J., Seo, Y.C.: Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants. Fuel 89(4), 804–809 (2010). CrossRefGoogle Scholar
  2. 2.
    Forzatti, P.: Present status and perspectives in de-NOx SCR catalysis. Appl. Catal. A 222(1–2), 221–236 (2001). CrossRefGoogle Scholar
  3. 3.
    Yu, Y., He, C., Chen, J., Yin, L., Qiu, T., Meng, X.: Regeneration of deactivated commercial SCR catalyst by alkali washing. Catal. Commun. 39(Supplement C), 78–81 (2013). CrossRefGoogle Scholar
  4. 4.
    Khodayari, R., Odenbrand, I.C.U.: Regeneration of commercial SCR catalysts by washing and sulphation: effect of sulphate groups on the activity. Appl. Catal. B 33(4), 277–291 (2001). CrossRefGoogle Scholar
  5. 5.
    Xue, Y., Zhang, Y., Zhang, Y., Zheng, S., Zhang, Y., Jin, W.: Electrochemical detoxification and recovery of spent SCR catalyst by in-situ generated reactive oxygen species in alkaline media. Chem. Eng. J. 325(Supplement C), 544–553 (2017). CrossRefGoogle Scholar
  6. 6.
    Zheng, Y.J., Anker, D.J., Johnsson, J.E.: Laboratory investigation of selective catalytic reduction catalysts: deactivation by potassium compounds and catalyst regeneration. Ind. Eng. Chem. Res. 43(4), 941–947 (2012). CrossRefGoogle Scholar
  7. 7.
    Li, D., Liao, Y., Lu, J., Xu, Q., Qingshan, Y.: Study on mathematical models for optimization of SCR catalyst replacement cycle and strategy. Electr. Power 46(12), 118–121 (2013). Google Scholar
  8. 8.
    Lietti, L., Nova, I., Ramis, G., Dall’Acqua, L., Busca, G., Giamello, E., Forzatti, P., Bregani, F.: Characterization and reactivity of V2O5-MoO3/TiO2 de-NOx SCR catalysts. J. Catal. 187(2), 419–435 (1999). CrossRefGoogle Scholar
  9. 9.
    Huo, Y., Chang, Z., Li, W., Liu, S., Dong, B.: Reuse and valorization of vanadium and tungsten from waste V2O5-WO3/TiO2 SCR catalyst. Waste Biomass Valoriz. 6(2), 159–165 (2015). CrossRefGoogle Scholar
  10. 10.
    Lasheen, T.A.: Soda ash roasting of titania slag product from rosetta ilmenite. Hydrometallurgy 93(3), 124–128 (2008). CrossRefGoogle Scholar
  11. 11.
    Chen, Y., Feng, Q., Shao, Y., Zhang, G., Ou, L., Lu, Y.: Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst. Int. J. Miner. Process. 79(1), 42–48 (2006). CrossRefGoogle Scholar
  12. 12.
    Hairunnisha, S., Sendil, G.K., Rethinaraj, J.P., Srinivasan, G.N., Adaikkalam, P., Kulandaisamy, S.: Studies on the preparation of pure ammonium para tungstate from tungsten alloy scrap. Hydrometallurgy 85(2), 67–71 (2007). CrossRefGoogle Scholar
  13. 13.
    Valighazvini, F., Rashchi, F., Nekouei, R.K.: Recovery of titanium from blast furnace slag. Ind. Eng. Chem. Res. 52(4), 1723–1730 (2013). CrossRefGoogle Scholar
  14. 14.
    Jena, B.C., Dresler, W., Reilly, I.G.: Extraction of titanium, vanadium and iron from titanomagnetite deposits at Pipestone lake Manitoba, Canada. Miner. Eng. 8(1), 159–168 (1995). CrossRefGoogle Scholar
  15. 15.
    Kim, J.W., Lee, W.G., Hwang, I.S., Jin, Y.L., Han, C.: Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching. J. Ind. Eng. Chem. 28, 73–77 (2015). CrossRefGoogle Scholar
  16. 16.
    Zhao, W., Yu, A., Wang, H., Jiang, X., Ding, J., Dong, Y., Zhong, Q.: Recovery of waste SCR catalyst from titanium, vanadium and molybdenum by wet method. Chem. Ind. Eng. Prog. 34(7), 2039–2048 (2015). Google Scholar
  17. 17.
    Chen, Y., Xie, Z., Wang, C.: Study on the TiO2 recovery from SCR catalyst waste in coal-fired power plants. Electr. Power 49(6), 151–156 (2016). Google Scholar
  18. 18.
    Wu, W., Tsai, T., Shen, Y.: Tungsten recovery from spent SCR catalyst using alkaline leaching and ion exchange. Minerals. 6(4), 107 (2016). CrossRefGoogle Scholar
  19. 19.
    Paulino, J.F., Afonso, J.C., Mantovano, J.L., Vianna, C.A.: Recovery of tungsten by liquid–liquid extraction from a wolframite concentrate after fusion with sodium hydroxide. Hydrometallurgy 127, 121–124 (2012). CrossRefGoogle Scholar
  20. 20.
    Niemelä, M., Pitkäaho, S., Ojala, S., Keiski, R.L., Perämäki, P.: Microwave-assisted aqua regia digestion for determining platinum, palladium, rhodium and lead in catalyst materials. Microchem. J. 101(Supplement C), 75–79 (2012). CrossRefGoogle Scholar
  21. 21.
    Sivakumar, S., Pillai, K., Mukundan, P., Warrier, K.G.K.: Sol–gel synthesis of nanosized anatase from titanyl sulfate. Mater. Lett. 57(2), 330–335 (2002). CrossRefGoogle Scholar
  22. 22.
    Liu, Z., Wang, B., Ma, R., He, F., Sun, Q.: Study on mechanism of recovery of tungsten and vanadium from waste SCR catalysts by soda roasting. Inorg. Chem. Ind. 48(7), 63–67 (2016)Google Scholar
  23. 23.
    Papp, S., Dékány, I.: Colloid chemical characterisation of layered titanates, their hydrophobic derivatives and self-assembled films. Colloid Polym. Sci. 283(10), 1116–1122 (2005). CrossRefGoogle Scholar
  24. 24.
    Safari, V., Arzpeyma, G., Rashchi, F., Mostoufi, N.: A shrinking particle—shrinking core model for leaching of a zinc ore containing silica. Int. J. Miner. Process. 93(1), 79–83 (2009). CrossRefGoogle Scholar
  25. 25.
    Wen, C.Y., Yu, Y.H.: A generalized method for predicting the minimum fluidization velocity. Aiche J. 12(3), 610–612 (1966). CrossRefGoogle Scholar
  26. 26.
    Zhou, W., Tang, S., Wan, L., Wei, K., Li, D.: Preparation of nano-TiO2 photocatalyst by hydrolyzation-precipitation method with metatitanic acid as the precursor. J. Mater. Sci. 39(3), 1139–1141 (2004). CrossRefGoogle Scholar
  27. 27.
    Gao, W., Wu, F., Luo, Z., Fu, J.X., Wang, D., Xu, B.K.: Studies on the relationship between the crystal form of TiO2 and its photocatalyzing degradation efficiency. Chem. Res. Chin. Univ. 295(1–2), 5–8 (2001)Google Scholar
  28. 28.
    Wang, H., Wu, Y., Xu, B.: Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis. Appl. Catal. B 59(3), 139–146 (2005). CrossRefGoogle Scholar
  29. 29.
    Tegehall, P.E.: Cheminform abstract: synthesis of crystalline titanium(IV) phosphates by direct precipitation from Ti(III) solutions and ion exchange properties of some of the prepared phases. Cheminform 18(10), 507–514 (1987). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical ProcessEast China University of Science and TechnologyShanghaiChina

Personalised recommendations