Waste and Biomass Valorization

, Volume 10, Issue 10, pp 2943–2957 | Cite as

Statistical Optimization for the Development of a Culture Medium Based on the Juice of Waste-Dates for Growth of Lactococcus lactis LCL Strain by Using the Plackett–Burman and Response Surface Methodology

  • Fatma Zohra Ras El Gherab
  • Omar HassaineEmail author
  • Halima Zadi-Karam
  • Nour-Eddine Karam
Original Paper



The processing industries of dates in Algeria, as elsewhere in other countries, generate very considerable quantities of waste. The purpose of our approach to valorize this dates-waste by using them to achieve at the formulation of a new culture medium for Lactococcus lactis, which is the most widely, used bacteria in the world for most mesophilic dairy starters.


A statistical approach was used to investigate the formulation and optimization of a culture medium containing dates juice for the growth of Lactococcus lactis LCL strain. The application of Plackett–Burman screening design was enabled reveals the most significant variables for the biomass production (dates juice, buffer and yeast extract), which were retained for second optimization using a central composite design methodology, leading to determine the optimal concentrations for a maximum growth of Lactococcus lactis LCL strain.


The investigated optimal concentrations for a maximum growth were 7% dates juice, 2.6 g/l yeast extract and 250 mM phosphate buffer K2HPO4/NaH2PO4. For these parameters, the maximum cell density of the Lactococcus lactis LCL strain was obtained with a coefficient of determination (R2) of 0.924 for the proposed model, thus demonstrating its robustness.


The obtained culture medium in this study containing dates juice represents a favorable medium for the growth of Lactococcus lactis LCL strain improving significantly its growth approximately 30% compared with the M17 medium and that showed a cost about 5 to 6 times lower, than that which is commonly used in the world.


Waste of dates Dates juice Culture medium Lactococcus lactis Plackett–Burman design Central composite design 


  1. 1.
    Bouguedoura, N., Bennaceur, M., Babahani, S., Benziouche, S.-E.: Date palm status and perspective in Algeria. In: Al-Khayri, J. M., Jain, S. M., Johnson, D. V. (eds.) Date Palm Genetic Resources and Utilization, vol. 1, pp. 125–168. Springer, New York (2015)Google Scholar
  2. 2.
    Zaid, A., Arias-Jimenez, E.J.: Date Palm Cultivation: FAO Plant Production and Protection Paper 156, Rev. 1. FAO, Rome (2002)Google Scholar
  3. 3.
    Akochi, K.E., Alli, I., Kermasha, S.: Characterisation of the pyrazines formed during the processing of maple syrup. J. Agric. Food Chem. 45, 3368–3373 (1997)CrossRefGoogle Scholar
  4. 4.
    Cheikh-Rouhou, S., Ben Amara, W., Besbes, S., Blecker, C., Attia, H.: Essai de valorisation d’écarts de triage de dattes: elaboration et caractérisation d’un extrait concentré de la pulpe. Microbiologie Hygiène Alimentaire 18, 3–12 (2006)Google Scholar
  5. 5.
    Abou-Zied, A.A., Baeshin, N.A., Baghlaf, A.O.: The formation of oxytetracycline in date-coat medium. Bioresour. Technol. 37, 179–184 (1991)CrossRefGoogle Scholar
  6. 6.
    Ahmed, A., Ahmed, A.W., Robinson, R.K.: Chemical composition of date varieties as influenced by the stage of ripening. Food Chem. 54, 305–309 (1995)CrossRefGoogle Scholar
  7. 7.
    Abou-Zeid, A.A., Baeshin, N.A., Baghlaf, A.O.: Utilization of date products in production of oxytetracycline by Streptomyces rimosus. Zentralbl. Mikrobiol. 148, 333–341 (1993)CrossRefGoogle Scholar
  8. 8.
    Elsanhoty, R.M., Al-Turki, I.A., Ramadan, M.F.: Screening of medium components by Plackett–Burman design for carotenoid production using date (Phoenix dactylifera) wastes. Ind. Crops Prod. 36, 313–320 (2012)CrossRefGoogle Scholar
  9. 9.
    Chauhan, K., Trivedi, U., Patel, K.C.: Statistical screening of medium components by Placket-Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresour. Technol. 98, 98–103 (2007)CrossRefGoogle Scholar
  10. 10.
    Choi, M., Al-Zahrani, S.M., Lee, S.Y.: Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice. Bioprocess. Biosyst. Eng. 37, 1007–1015 (2014)CrossRefGoogle Scholar
  11. 11.
    Nancib, A., Nancib, N., Boudrant, J.: Production of lactic acid from date juice extract with free cells of single and mixed cultures of Lactobacillus casei and Lactococcus lactis. World J. Microbiol. Biotechnol. 25, 1423–1429 (2009)CrossRefGoogle Scholar
  12. 12.
    Saelee, N., Sriroth, K.: Optimization of nutrients in fermentative lactic acid production using oil palm trunk juice as substrate. Adv. Biosci. Biotechnol. 5, 957–965 (2014)CrossRefGoogle Scholar
  13. 13.
    Mostafa, Y.S., Alamri, S.A.: Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger. Saudi J. Biol. Sci. 19, 241–246 (2012)CrossRefGoogle Scholar
  14. 14.
    Boulal, A., Benali, B., Moulai, M., Touzi, A.: Transformation des déchets de dattes de la région d’Adrar en bioéthanol. Revue des Energies Renouvelables 13, 455–463 (2010)Google Scholar
  15. 15.
    Mimouni, Y., Siboukeur, O.: Etude des propriétés nutritives et diététiques des sirops de dattes extraits par diffusion, en comparaison avec les sirops à haute teneur en fructose (isoglucoses), issus de l’industrie de l’amidon. Annales des Sciences et Technologie 3, 1–11 (2011)Google Scholar
  16. 16.
    Nancib, N., Nancib, A., Bourdant, J.: Use of waste products in the fermentative formation of Baker’s yeast biomass by Saccharomyces cervisiae. Bioresour. Technol. 60, 67–71 (1997)CrossRefGoogle Scholar
  17. 17.
    Stiles, M.E., Holzapfel, W.H.: Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36, 1–29 (1997)CrossRefGoogle Scholar
  18. 18.
    Hassaine, O., Zadi-Karam, H., Karam, N.-E.: Statistical optimization of lactic acid production by Lactococcus lactis strain, using the central composite experimental design. Afr. J. Biotechnol. 13, 4259–4267 (2014)CrossRefGoogle Scholar
  19. 19.
    Hwanhlem, N., Chobert, J.-M., Kittikun, A.H.: Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in southern Thailand as potential bio-control agents in food: Isolation, screening and optimization. Food Control. 41, 202–211 (2014)CrossRefGoogle Scholar
  20. 20.
    Nordkvist, M., Jensen, N.B.S., Villadsen, J.: Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: requirement of acetate to sustain growth under microaerobic conditions. Appl. Environ. Microbiol. 69, 3462–3468 (2003)CrossRefGoogle Scholar
  21. 21.
    Rodrigues, L., Teixeira, J., Oliveira, R., van der Mei, H.C.: Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Process Biochem. 41, 1–10 (2006)CrossRefGoogle Scholar
  22. 22.
    Solem, C., Dehli, T., Jensen, P.R.: Rewiring Lactococcus lactis for ethanol production. Appl. Environ. Microbiol. 79, 2512–2518 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhang, G., Mills, D.A., Block, D.E.: Development of chemically defined media supporting high-cell-density growth of Lactococci, Enterococci, and Streptococci. Appl. Environ. Microbiol. 75, 1080–1087 (2009)CrossRefGoogle Scholar
  24. 24.
    Jensen, P.R., Hammer, K.: Minimal requirements for exponential growth of Lactococcus lactis. Appl. Environ. Microbiol. 59, 4363–4366 (1993)Google Scholar
  25. 25.
    Terzaghi, B.E., Sandine, W.E.: Improved medium for Lactic streptococci and their Bacteriophage. Appl. Environ. Microbiol. 29, 807–813 (1975)Google Scholar
  26. 26.
    Rogosa, M., Mitchell, J.A., Wiserman, R.F.: A selective medium for isolation and enumeration of oral and fecal lactobacilli. J. Bacteriol. 62, 132–133 (1951)Google Scholar
  27. 27.
    Kaur, B., Garg, N., Sachdev, A.: Optimization of bacteriocin production in Pediococcus acidilactici BA28 using response surface methodology. Asian J. Pharm. Clin. Res. 6, 192–195 (2013)Google Scholar
  28. 28.
    Naveena, B.J., Altaf, Md, Bhadriah, K.: Reddy, G.: Selection of medium components by Plackett–Burman design for production of L(+) lactic acid by Lactobacilus amylophilus GV-6 in SSF using wheat bran. Bioresour. Technol. 96, 485–490 (2005)CrossRefGoogle Scholar
  29. 29.
    Mangayil, R., Aho, T., Karp, M., Santala, V.: Improved bioconversion of crude glycerol to hydrogen by statistical optimization of media components. Renew. Energy 75, 583–589 (2015)CrossRefGoogle Scholar
  30. 30.
    Nancib, N., Ghoul, M., Larous, L., Nacib, A., Adimi, L., Remmal, M., Boudrant, J.: Use of date products in production of thermophilic dairy starters strain Streptococcus thermophilus. Bioresour. Technol. 67, 291–295 (1999)CrossRefGoogle Scholar
  31. 31.
    A.O.A.C.: Official Methods of Analysis: Association of Official Analytical Chemist, Benjamin Franklin Station, 15th edn. A.O.A.C, Washington, DC (2000)Google Scholar
  32. 32.
    Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  33. 33.
    Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M.: Analysis of total phenols and others oxidation substrates and antioxidants by means of Folin-Ciocauteau reagent. Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  34. 34.
    Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Devies, O.L., Box, E.P.: Statistics for experiments. Oliver & Boyd for Imperical Chemical Industries Lim, New York (1971)Google Scholar
  36. 36.
    Hayek, S.A., Ibrahim, S.A.: Current limitations and challenges with lactic acid bacteria: a review. Food Nutr. Sci. 4, 73–87 (2013)Google Scholar
  37. 37.
    Calderon, M., Loiseau, G., Guyot, J.P.: Nutritional requirements and simplified cultivation medium to study growth and energetics of a sourdough lactic acid bacterium Lactobacillus fermentum Ogi E1 during heterolactic fermentation of starch. J. Appl. Microbiol. 90, 508–516 (2001)CrossRefGoogle Scholar
  38. 38.
    John, R.P., Sukumaran, R.K., Nampoothiri, K.M., Pandey, A.: Statistical optimization of simultaneous saccharification and L(+)-lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology. Biochem. Eng. J. 36, 262–267 (2007)CrossRefGoogle Scholar
  39. 39.
    Gray, V.L., Müller, C.T., Watkins, I.D., Lloyd, D.: Peptones from diverse sources: pivotal determinants of bacterial growth dynamics. J. Appl. Microbiol. 104, 554–565 (2008)CrossRefGoogle Scholar
  40. 40.
    Bolner de Lima, C.J., Coelho, L.F., Blanco, K.C., Contiero, J.: Response surface optimization of D(-)-lactic acid production by Lactobacillus SMI8 using corn steep liquor and yeast autolysate as an alternative nitrogen source. Afr. J. Biotechnol. 8, 5842–5846 (2009)CrossRefGoogle Scholar
  41. 41.
    Tanaka, K., Ohta, T., Ishizaki, A.: Effect of nitrogen sources in culture medium on l-lactate fermentation employing Lactococcus lactis IO-1. J. Fat. Agr., Kyushu Univ. 39, 131–138 (1995)Google Scholar
  42. 42.
    Preetha, R., Jayaprakash, N.S., Philip, R., Singh, I.S.B.: Optimization of carbon and nitrogen sources and growth factors for the production of an aquaculture probiotic (Pseudomonas MCCB 103) using response surface methodology. J. Appl. Microbiol. 102, 1043–1051 (2007)Google Scholar
  43. 43.
    Chauhan, K., Trivedi, U., Patel, K.C.: Application of response surface methodology for optimization of lactic acid production using date juice. J. Microbiol. Biotechnol. 16, 1410–1415 (2006)Google Scholar
  44. 44.
    Cogan, T., Barbosa, M., Beuvier, E., Banchi-Salvadori, B., Coconcelli, P.S., Fernandes, I., Gomez, J., Gomez, R., Kalantzopoulos, G., Ledda, A., Medina, M., Rea, M.C., Rodriguez, E.: Characterization of lactic acid bacteria in artisanal dairy products. J. Dairy Res. 64, 409–421 (1997)CrossRefGoogle Scholar
  45. 45.
    Loubiere, P., Novak, L., Cocaign-Bousquet, M., Lindley, N.D.: Nutritional requirements of lactic acid bacteria: interactions between carbon and nitrogen flux. Lait 76, 5–12 (1996)CrossRefGoogle Scholar
  46. 46.
    Monnet, V., Grippon, J.C.: Nitrogen metabolism of lactic acid bacteria. In: De Roissart, H., Luquet, F.M. (eds.) Lactic Acid Bacteria: Fundamental and Technological Aspects, Lorica, Uriage, pp. 331–347. Lavoisier, Paris (1994)Google Scholar
  47. 47.
    Stackebrandt, E., Teuber, M.: Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie 70, 317–324 (1988)CrossRefGoogle Scholar
  48. 48.
    Amouzou, K.S., Prevostand, H., Divies, C.: Effects of milk magnesium supplementation on lactic acid fermentation by Streptococcus lactis and Streptococcus thermophilus. Lait 65, 21–34 (1985)CrossRefGoogle Scholar
  49. 49.
    Juillard, V., Le Bars, D., Kunji, E.R.S., Koning, W.N., Griponand, J.C., Richard, J.: Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl. Environ. Microbiol. 61, 3024–3030 (1995)Google Scholar
  50. 50.
    Raccach, M.: Manganese and lactic acid bacteria. J. Food Protect. 48, 895–898 (1985)CrossRefGoogle Scholar
  51. 51.
    Benthin, S., Villadsen, J.: Amino acid utilization by Lactococcus lactis subsp. cremoris FD1 during growth on yeast extract or casein peptone. J. Applied. Bacteriol. 80, 65–72 (1996)CrossRefGoogle Scholar
  52. 52.
    Cocaign-Bousquet, M., Garrigues, C., Novak, L., Lindley, N.D., Loubiere, P.: Rational development of a simple synthetic medium for the sustained growth of Lactococcus lactis. J. Appl. Bacteriol. 79, 108–116 (1994)CrossRefGoogle Scholar
  53. 53.
    Desmazeaud, M.: Milk culture medium. In: De Roissart, H., Luquet, F.M. (eds.) Lactic Acid Bacteria: Fundamental and Technological Aspects, Lorica, Uriage, pp. 291–307. Lavoisier, Paris (1994)Google Scholar
  54. 54.
    Talwalkar, A., Kailasapathy, K.: Comparison of selective and differential media for the accurate enumeration of strains of Lactobacillus acidophilus Bifidobacterium spp. and Lactobacillus casei complex from commercial yoghurts. Int. Dairy J. 14, 143–149 (2004)CrossRefGoogle Scholar
  55. 55.
    Vinderola, C.G., Reinheimer, J.A.: Culture media for the enumeration of Bifidobacterium bifidum and Lactobacillus acidophilus in the presence of yoghurt bacteria. Int. Dairy J. 9, 497–505 (1999)CrossRefGoogle Scholar
  56. 56.
    Chamba, J.F., Duong, C., Fazeland, A., Prost, F.: Lactic acid bacteria selection. In: De Roissart, H., Luquet, F.M. (eds.) Lactic Acid Bacteria: Fundamental and Technological Aspects, Lorica, Uriage, pp. 499–518. Lavoisier, Paris (1994)Google Scholar
  57. 57.
    Coeuret, V., Dubernet, S., Bernardeau, M., Gueguen, M., Vernoux, J.P.: Isolation, characterization and identification of lactobacilli focusing mainly on cheeses and other dairy products. Lait 83, 269–306Google Scholar
  58. 58.
    Dave, R.I., Shah, N.P.: Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and bifidobacteria. J. Dairy Sci. 79, 1529–1536 (1996)CrossRefGoogle Scholar
  59. 59.
    Roy, D.: Media for the isolation and enumeration of bifidobacteria in dairy products. Int. J. Food Microbiol. 69, 167–182 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Fatma Zohra Ras El Gherab
    • 1
  • Omar Hassaine
    • 1
    Email author
  • Halima Zadi-Karam
    • 1
  • Nour-Eddine Karam
    • 1
  1. 1.Laboratoire de Biologie des Microorganismes et Biotechnologie, Department of Biotechnology, Faculty of Sciences of Nature and LifeUniversity of Oran 1 - Ahmed Ben BellaOranAlgeria

Personalised recommendations