Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 10, pp 2933–2942 | Cite as

Valorization of Vanillyl Alcohol by Pigments: Prussian Blue Analogue as a Highly-Effective Heterogeneous Catalyst for Aerobic Oxidation of Vanillyl Alcohol to Vanillin

  • Meng-Wei Zheng
  • Hong-Kai Lai
  • Kun-Yi Andrew LinEmail author
Original Paper
  • 135 Downloads

Abstract

Prussian blue analogues (PBA), a class of metal-coordinated frameworks, are proposed in this study for aerobic oxidation of a lignin model compound, vanillyl alcohol (VAL), to the valuable product, vanillin (VN). While different metals and hexacyano-metalates are used to prepare various PBAs, the prototype PBA (Fe3[Fe(CN)6]2 abbreviated as “FeFe”) exhibited the highest catalytic activity towards VAL conversion to VN. The kinetics of VAL conversion is determined and the production of VN is also analyzed using the pseudo first order rate law. In addition, FeFe exhibits the highest catalytic activity to convert VAL to VN with the highest production and selectivity compared to the reported heterogeneous catalysts. FeFe can be also re-used to catalyze conversion of VAL to VN without significant activity loss. These features indicate that FeFe, as an easy-to-obtain and non-toxic pigment, is a promising catalyst for aerobic oxidation of VAL.

Keywords

Lignin model compounds Vanillyl alcohol Vanillin Prussian blue 

Supplementary material

12649_2018_280_MOESM1_ESM.docx (231 kb)
Supplementary material 1 (DOCX 231 KB)

References

  1. 1.
    Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C.: Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. DTIC Document (2005)Google Scholar
  2. 2.
    Behling, R., Valange, S., Chatel, G.: Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem. 18, 1839–1854 (2016)CrossRefGoogle Scholar
  3. 3.
    Lange, H., Decina, S., Crestini, C.: Oxidative upgrade of lignin—recent routes reviewed. Eur. Polym. J. 49, 1151–1173 (2013)CrossRefGoogle Scholar
  4. 4.
    Azarpira, A., Ralph, J., Lu, F.: Catalytic alkaline oxidation of lignin and its model compounds: a pathway to aromatic biochemicals. BioEnergy Res. 7, 78–86 (2014)CrossRefGoogle Scholar
  5. 5.
    Dai, J., Patti, A.F., Saito, K.: Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett. 57, 4945–4951 (2016)CrossRefGoogle Scholar
  6. 6.
    Pan, J., Fu, J., Lu, X.: Microwave-assisted oxidative degradation of lignin model compounds with metal salts. Energy Fuels 29, 4503–4509 (2015)CrossRefGoogle Scholar
  7. 7.
    Bulushev, D.A., Ross, J.R.H.: Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal. Today 171, 1–13 (2011)CrossRefGoogle Scholar
  8. 8.
    Yokoyama, S. (ed.): Thermochemical conversion of biomass. In: Asia Biomass Handbook: A Guide for Biomass Production and Utilization, The Japan Institute of Energy, Tokyo (2008)Google Scholar
  9. 9.
    Jha, A., Patil, K.R., Rode, C.V.: Mixed Co–Mn oxide-catalysed selective aerobic oxidation of vanillyl alcohol to vanillin in base-free conditions. ChemPlusChem 78, 1384–1392 (2013)CrossRefGoogle Scholar
  10. 10.
    Jha, A., Rode, C.V.: Highly selective liquid-phase aerobic oxidation of vanillyl alcohol to vanillin on cobalt oxide (Co3O4) nanoparticles. New J. Chem. 37, 2669–2674 (2013)CrossRefGoogle Scholar
  11. 11.
    Saha, S., Hamid, S.B.A., Ali, T.H.: Catalytic evaluation on liquid phase oxidation of vanillyl alcohol using air and H2O2 over mesoporous Cu-Ti composite oxide. Appl. Surf. Sci. 394, 205–218 (2017)CrossRefGoogle Scholar
  12. 12.
    Jha, A., Mhamane, D., Suryawanshi, A., Joshi, S.M., Shaikh, P., Biradar, N., Ogale, S., Rode, C.V.: Triple nanocomposites of CoMn2O4, Co3O4 and reduced graphene oxide for oxidation of aromatic alcohols. Catal. Sci. Technol. 4, 1771–1778 (2014)CrossRefGoogle Scholar
  13. 13.
    Yuan, Z., Chen, S., Liu, B.: Nitrogen-doped reduced graphene oxide-supported Mn3O4: an efficient heterogeneous catalyst for the oxidation of vanillyl alcohol to vanillin. J. Mater. Sci. 52, 164–172 (2017)CrossRefGoogle Scholar
  14. 14.
    Tarasov, A.L., Kustov, L.M., Bogolyubov, A.A., Kiselyov, A.S., Semenov, V.V.: New and efficient procedure for the oxidation of dioxybenzylic alcohols into aldehydes with Pt and Pd-based catalysts under flow reactor conditions. Appl. Catal. A 366, 227–231 (2009)CrossRefGoogle Scholar
  15. 15.
    Ramana, S., Rao, B.G., Venkataswamy, P., Rangaswamy, A., Reddy, B.M.: Nanostructured Mn-doped ceria solid solutions for efficient oxidation of vanillyl alcohol. J. Mol. Catal. A 415, 113–121 (2016)CrossRefGoogle Scholar
  16. 16.
    Behling, R., Chatel, G., Valange, S.: Sonochemical oxidation of vanillyl alcohol to vanillin in the presence of a cobalt oxide catalyst under mild conditions. Ultrason. Sonochem. 36, 27–35 (2017)CrossRefGoogle Scholar
  17. 17.
    Fache, M., Boutevin, B., Caillol, S.: Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46 (2016)CrossRefGoogle Scholar
  18. 18.
    Jiang, J.-A., Chen, C., Guo, Y., Liao, D.-H., Pan, X.-D., Ji, Y.-F.: A highly efficient approach to vanillin starting from 4-cresol. Green Chem. 16, 2807–2814 (2014)CrossRefGoogle Scholar
  19. 19.
    Yepez, R., Garcia, S., Schachat, P., Sanchez-Sanchez, M., Gonzalez-Estefan, J.H., Gonzalez-Zamora, E., Ibarra, I.A., Aguilar-Pliego, J.: Catalytic activity of HKUST-1 in the oxidation of trans-ferulic acid to vanillin. New J. Chem. 39, 5112–5115 (2015)CrossRefGoogle Scholar
  20. 20.
    Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)CrossRefGoogle Scholar
  21. 21.
    Makwana, V.D., Son, Y.-C., Howell, A.R., Suib, S.L.: The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: a kinetic and isotope-labeling study. J. Catal. 210, 46–52 (2002)CrossRefGoogle Scholar
  22. 22.
    Kshirsagar, V.S., Garade, A.C., Patil, K.R., Shirai, M., Rode, C.V.: Liquid phase oxidation of p-cresol over cobalt saponite. Top. Catal. 52, 784–788 (2009)CrossRefGoogle Scholar
  23. 23.
    Behera, G.C., Parida, K.M.: Liquid phase catalytic oxidation of benzyl alcohol to benzaldehyde over vanadium phosphate catalyst., Appl. Catal. A 413–414, 245–253 (2012)CrossRefGoogle Scholar
  24. 24.
    Mishra, D.K., Dabbawala, A.A., Park, J.J., Jhung, S.H., Hwang, J.-S.: Selective hydrogenation of d-glucose to d-sorbitol over HY zeolite supported ruthenium nanoparticles catalysts. Catal. Today 232, 99–107 (2014)CrossRefGoogle Scholar
  25. 25.
    Zakzeski, J., Jongerius, A.L., Weckhuysen, B.M.: Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem. 12, 1225–1236 (2010)CrossRefGoogle Scholar
  26. 26.
    Berrie, B.: Prussian Blue. National Gallery of Art, Washington (1997)Google Scholar
  27. 27.
    Questions and Answers on Prussian Blue, in: T.F.a.D.A. (FDA) (ed.), U.S. Food and Drug Administration, Silver Spring, MD (USA), 2003Google Scholar
  28. 28.
    WHO, WHO Model List of Essential Medicines, in: W.E.C.o.t.S.a.U.o.E. Medicines (ed.), WHO, Geneva, 2014Google Scholar
  29. 29.
    Torad, N.L., Hu, M., Imura, M., Naito, M., Yamauchi, Y.: Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. J. Mater. Chem. 22, 18261–18267 (2012)CrossRefGoogle Scholar
  30. 30.
    M. M, S.P., Rd, O.N., R. R, L.-L.P., Jl, G.-M.: Prussian blue and analogues: biosensing applications in health care. In: Tiwari, A., Nordin, A.N. (eds.) Advanced Biomaterials and Biodevices. Wiley, Hoboken (2014)Google Scholar
  31. 31.
    Yue, Y., Binder, A.J., Guo, B., Zhang, Z., Qiao, Z.-A., Tian, C., Dai, S.: Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed. 53, 3134–3137 (2014)CrossRefGoogle Scholar
  32. 32.
    Karadas, F., El-Faki, H., Deniz, E., Yavuz, C.T., Aparicio, S., Atilhan, M.: CO2 adsorption studies on Prussian blue analogues. Microporous Mesoporous Mater. 162, 91–97 (2012)CrossRefGoogle Scholar
  33. 33.
    Liang, Y., Yi, C., Tricard, S., Fang, J., Zhao, J., Shen, W.: Prussian blue analogues as heterogeneous catalysts for epoxidation of styrene. RSC Adv. 5, 17993–17999 (2015)CrossRefGoogle Scholar
  34. 34.
    Lin, K.-Y.A., Chen, B.-J., Chen, C.-K.: Evaluating Prussian blue analogues MII3[MIII(CN)6]2 (MII = Co, Cu, Fe, Mn, Ni; MIII = Co, Fe) as activators for peroxymonosulfate in water. RSC Adv. 6, 92923–92933 (2016)CrossRefGoogle Scholar
  35. 35.
    Kaye, S.S., Long, J.R.: Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005)CrossRefGoogle Scholar
  36. 36.
    Li, X., Liu, J., Rykov, A.I., Han, H., Jin, C., Liu, X., Wang, J.: Excellent photo-Fenton catalysts of Fe–Co Prussian blue analogues and their reaction mechanism study. Appl. Catal. B 179, 196–205 (2015)CrossRefGoogle Scholar
  37. 37.
    Aksoy, M., Nune, S.V.K., Karadas, F.: A novel synthetic route for the preparation of an amorphous Co/Fe Prussian blue coordination compound with high electrocatalytic water oxidation activity. Inorg. Chem. 55, 4301–4307 (2016)CrossRefGoogle Scholar
  38. 38.
    Pintado, S., Goberna-Ferrón, S., Escudero-Adán, E.C., Galán-Mascarós, J.R.: Fast and persistent electrocatalytic water oxidation by Co–Fe Prussian blue coordination polymers. J. Am. Chem. Soc. 135, 13270–13273 (2013)CrossRefGoogle Scholar
  39. 39.
    Hu, M., Ishihara, S., Ariga, K., Imura, M., Yamauchi, Y.: Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements. Chemistry 19, 1882–1885 (2013)CrossRefGoogle Scholar
  40. 40.
    Lin, K.-Y.A., Lai, H.-K., Chen, Z.-Y.: Selective generation of vanillin from catalytic oxidation of a lignin model compound using ZIF-derived carbon-supported cobalt nanocomposite. J. Taiwan Inst. Chem. Eng. 78, 337–343 (2017)CrossRefGoogle Scholar
  41. 41.
    Elamathi, P., Kolli, M.K., Chandrasekar, G.: Catalytic oxidation of vanillyl alcohol using FeMCM-41 nanoporous tubular reactor. Int. J. Nanosci. 17, 1760010 (2018)CrossRefGoogle Scholar
  42. 42.
    Adam, F., Chew, T.-S., Andas, J.: Liquid phase oxidation of acetophenone over rice husk silica vanadium catalyst. Chin. J. Catal. 33, 518–522 (2012)CrossRefGoogle Scholar
  43. 43.
    Singh, A.P., Selvam, T.: Liquid phase oxidation of para-chlorotoluene to para-chlorobenzaldehyde using vanadium silicate molecular sieves. Appl. Catal. A 143, 111–124 (1996)CrossRefGoogle Scholar
  44. 44.
    Lai, H.-K., Chou, Y.-Z., Lee, M.-H., Lin, K.-Y.A.: Coordination polymer-derived cobalt nanoparticle-embedded carbon nanocomposite as a magnetic multi-functional catalyst for energy generation and biomass conversion. Chem. Eng. J. 332, 717–726 (2018)CrossRefGoogle Scholar
  45. 45.
    Shilpy, M., Ehsan, M.A., Ali, T.H., Hamid, S.B.A., Ali, M.E.: Performance of cobalt titanate towards H2O2 based catalytic oxidation of lignin model compound. RSC Adv. 5, 79644–79653 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Meng-Wei Zheng
    • 1
  • Hong-Kai Lai
    • 1
  • Kun-Yi Andrew Lin
    • 1
    Email author
  1. 1.Department of Environmental EngineeringNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations