Biogas and Volatile Fatty Acids Production: Temperature as a Determining Factor in the Anaerobic Digestion of Spirulina platensis

  • Cristina González-Fernández
  • Lara Méndez
  • Elia Tomas-Pejó
  • Mercedes Ballesteros
Original Paper
  • 31 Downloads

Abstract

This investigation compared the digestion in completely stirred tank reactor (CSTR) of Spirulina platensis at two digestion temperatures (25 and 35 °C). This comparison was conducted in terms methane production, organic matter (COD) removal, volatile fatty acids (VFAs) production and nitrogen mineralization. In mesophilic range, 42%tCOD removal and methane yield of 107 mL CH4 g VSin−1 was attained. Due to the high digestate ammonium concentration, methane yield diminished along digestion time and VFAs accumulated. At 25 °C, methane production was negligible while 23%tCOD was removed. Ammonium concentration and nitrogen mineralization (± 70%) remained as high as in mesophilic range and thus, VFAs accumulation was also observed at 25 °C. Low temperature digestion shifted, however, the VFAs profile. This study shows that S. platensis might not be an optimum substrate for biogas production due to their high protein content. Nevertheless, VFAs can be used as building blocks for the production of fuels or chemicals.

Keywords

Anaerobic digestion Spirulina Inhibition VFAs Methane 

Notes

Acknowledgements

The authors wish to thank the Spanish Ministry of Economy and Competitiveness for the financial support provided through the Grants ENE2013-45416-R and RYC-2014-16823. We would also like to acknowledge the Community of Madrid for the support offered in the framework of the project INSPIRA-1 (S2013/ABI-2783) and in addition to the WWTP of Valladolid (Spain) for kindly suppling the anaerobic sludge samples.

References

  1. 1.
    González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.-P.: Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels Bioprod. Biorefin. 6, 205–218 (2012)CrossRefGoogle Scholar
  2. 2.
    Passos, F., Uggetti, E., Carrère, H., Ferrer, I.: Pretreatment of microalgae to improve biogas production: a review. Bioresour. Technol. 72, 403–412 (2014)CrossRefGoogle Scholar
  3. 3.
    Palinska, K.A., Krumbein, W.E.: Perforation patterns in the peptidoglycan wall of filamentous cyanobacteria. J. Phycol. 36, 139–145 (2000)CrossRefGoogle Scholar
  4. 4.
    Méndez, L., Mahdy, A., Ballesteros, M., González-Fernández, C.: Chlorella vulgaris vs cyanobacterial biomasses: comparison in terms of biomass productivity and biogas yield. Energy Convers. Manag 92, 137–142 (2015)CrossRefGoogle Scholar
  5. 5.
    Markou, G., Georgakakis, D.: Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl. Energy 88, 3389–3401 (2011)CrossRefGoogle Scholar
  6. 6.
    González-Fernández, C., Ballesteros, M.: Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol. Adv. 30(6), 1655–1661 (2012)CrossRefGoogle Scholar
  7. 7.
    Becker, E.W.: Micro-algae as a source of protein. Biotechnol. Adv. 25(2), 207–210 (2007)CrossRefGoogle Scholar
  8. 8.
    Yu, H., Gu, G.: Biomethanation of brewery wastewater using an anaerobic upflow blanket filter. J. Clean. Prod. 4, 219–223 (1996)CrossRefGoogle Scholar
  9. 9.
    Lettinga, G., Rebac, S., Zeeman, G.: Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 19(9), 363–370 (2001)CrossRefGoogle Scholar
  10. 10.
    Shah, F.A., Mahmood, Q., Shah, M.M., Pervez, A., Asad, S.A.: Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci. World J. (2014).  https://doi.org/10.1155/2014/183752 Google Scholar
  11. 11.
    Depraetere, O., Deschoenmaeker, F., Badri, H., Monsieurs, P., Foubert, I., Leys, N., et al.: Trade-off between growth and carbohydrate accumulation in nutrient-limited Arthrospira sp. PCC 8005 studied by integrating transcriptomic and proteomic approaches. PLoS ONE 10(7), e0132461 (2015)CrossRefGoogle Scholar
  12. 12.
    Eaton, A.D., Clesceri, L.S., Greenberg, A.E.: Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC (2005)Google Scholar
  13. 13.
    López, C.V.G., García, M.D.C.C., Fernández, F.G.A., Bustos, C.S., Chisti, Y., Sevilla, J.M.F.: Protein measurements of microalgal and cyanobacterial biomass. Bioresour. Technol. 101, 7587–7591 (2010)CrossRefGoogle Scholar
  14. 14.
    DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  15. 15.
    Mahdy, A., Mendez, L., Ballesteros, M., González-Fernández, C.: Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers. Manag. 85, 551–557 (2014)CrossRefGoogle Scholar
  16. 16.
    Mendez, L., Mahdy, A., Timmers, R.A., Ballesteros, M., González-Fernández, C.: Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour. Technol. 149, 136–141 (2013)CrossRefGoogle Scholar
  17. 17.
    Aramrueanga, N., Rapporta, J., Zhang, R.: Effects of hydraulic retention time and organic loading rate on performance and stability of anaerobic digestion of Spirulina platensis. Biosyst. Eng. 147, 174–182 (2016)CrossRefGoogle Scholar
  18. 18.
    Lupatini, A.L., Colla, L.M., Canan, C., Colla, E.: Potential application of microalga Spirulina platensis as a protein source. J. Sci. Food Agric. 97, 724–732 (2017)CrossRefGoogle Scholar
  19. 19.
    Markou, G.: Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresour. Technol. 116, 533–535 (2012)CrossRefGoogle Scholar
  20. 20.
    Pavan, P., Battistoni, P., Mata-Alvarez, J.: Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability. Water Sci. Technol. 41, 75–81 (2000)Google Scholar
  21. 21.
    Yi, J., Dong, B., Jin, J., Dai, X.: Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PLoS ONE 9(7), 102548 (2014)CrossRefGoogle Scholar
  22. 22.
    El-Mashad, H.M.: Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Bioresour. Technol. 132, 305–312 (2013)CrossRefGoogle Scholar
  23. 23.
    Inglesby, A.E., Griffiths, M.J., Harrison, S.T.L.: Anaerobic digestion of Spirulina sp. and Scenedesmus sp.: a comparison and investigation of the impact of mechanical pre-treatment. J. Appl. Phycol. 27(5), 1891–1900 (2015)CrossRefGoogle Scholar
  24. 24.
    González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P.: Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. biomass. Bioresour. Technol. 129, 219–223 (2013)CrossRefGoogle Scholar
  25. 25.
    Schwede, S., Rehman, Z.U., Gerber, M., Theiss, C., Span, R.: Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour. Technol. 143, 505–511 (2013)CrossRefGoogle Scholar
  26. 26.
    Gonzalez-Fernandez, C., Sialve, B., Molinuevo-Salces, B.: Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour. Technol. 198, 896–906 (2015)CrossRefGoogle Scholar
  27. 27.
    Passos, F., Ferrer, I.: Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ. Sci. Technol. 48, 7171–7178 (2014)CrossRefGoogle Scholar
  28. 28.
    Markou, G., Angelidaki, I., Georgakakis, D.: Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion. Fuel 111, 872–879 (2013)CrossRefGoogle Scholar
  29. 29.
    Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A.: Anaerobic Digestion Model No 1. Scientific and Technical Report 13. IWA Publishing (2002)Google Scholar
  30. 30.
    Chen, S., Zamudio Cañas, E.M., Zhang, Y., Zhu, Z., He, Q.: Impact of substrate overloading on archaeal populations in anaerobic digestion of animal waste. J. Appl. Microbiol. 113(6), 1371–1379 (2012)CrossRefGoogle Scholar
  31. 31.
    Mahdy, A., Mendez, L., Ballesteros, M., González-Fernández, C.: Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semicontinuous anaerobic digestion. Fuel 158, 35–41 (2015)CrossRefGoogle Scholar
  32. 32.
    Boe, K., Batstone, D.J., Steyer, J.P., Angelidaki, I.: State indicators for monitoring the anaerobic digestion process. Water Res. 44, 5973–5980 (2010)CrossRefGoogle Scholar
  33. 33.
    Vanwonterghem, I., Jensen, P.D., Rabaey, K., Tysona, G.W.: Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters. Sci. Rep. 5, 8496 (2015)CrossRefGoogle Scholar
  34. 34.
    Ras, M., Lardon, L., Sialve, B., Bernet, N., Steyer, J.-P.: Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 102(1), 200–206 (2011)CrossRefGoogle Scholar
  35. 35.
    Mahdy, A., Méndez, L., Tomás-Pejó, E., Morales, M.M., Ballesteros, M., González-Fernández, C.: Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp. J. Chem. Technol. Biotechnol. 91(5), 1299–1305 (2016)CrossRefGoogle Scholar
  36. 36.
    Yenigün, O., Demirel, B.: Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48, 901–911 (2013)CrossRefGoogle Scholar
  37. 37.
    Mahdy, A., Fotidis, I.A., Mancini, E., Ballesteros, M., González-Fernández, C., Angelidaki, I.: Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresour. Technol. 225, 272–278 (2017)CrossRefGoogle Scholar
  38. 38.
    Mahdy, A., Mendez, L., Ballesteros, M., Gonzalez-Fernandez, C.: Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 158, 35–41 (2015)CrossRefGoogle Scholar
  39. 39.
    Lin, Q., He, G., Rui, J., Fang, X., Tao, Y., Li, J., Li, X.: Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion. Microb. Cell Fact. 15, 96 (2016)CrossRefGoogle Scholar
  40. 40.
    Lin, Q., De Vrieze, J., Li, C., Li, J., Li, J., Yao, M., Hedenec, P., et al.: Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process. Water Res. 123, 134–143 (2017)CrossRefGoogle Scholar
  41. 41.
    Madsen, M., Holm-Nielsen, J.B., Esbensen, K.H.: Monitoring of anaerobic digestion process: a review perspective. Renew. Sustain. Energy Rev. 15, 3141–3155 (2011)CrossRefGoogle Scholar
  42. 42.
    Gonzalez-Martinez, A., Garcia-Ruiz, M.J., Rodriguez-Sanchez, A., Osorio, F., Gonzalez-Lopez, J.: Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester. Appl. Microbiol. Biotechnol. 100, 6013–6033 (2016)CrossRefGoogle Scholar
  43. 43.
    Gerardi, M.H.: The Microbiology of Anaerobic Digesters. Wastewater Microbiology Series. Wiley, New Jersey (2003)CrossRefGoogle Scholar
  44. 44.
    McMahon, K.D., Stroot, P.G., Mackie, R.I., Raskin, L.: Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-II: microbial population dynamics. Water Res. 35, 1817–1827 (2001)CrossRefGoogle Scholar
  45. 45.
    Kotsyurbenko, O.R., Chin, K.-J., Glagolev, M.V., Stubner, S., Simankova, M.V., Nozhevnikova, A.N., Conrad, R.: Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ. Microbiol. 6, 1159–1173 (2004)CrossRefGoogle Scholar
  46. 46.
    Baumann, I., Westermann, P.: Microbial production of short chain fatty acids from lignocellulosic biomass: current processes and market. BioMed Res. Int. 2016, 8469357 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Cristina González-Fernández
    • 1
  • Lara Méndez
    • 1
  • Elia Tomas-Pejó
    • 1
  • Mercedes Ballesteros
    • 1
    • 2
  1. 1.IMDEA EnergyMadridSpain
  2. 2.CIEMATMadridSpain

Personalised recommendations