Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 7, pp 1833–1844 | Cite as

Enzymatic Conversion of Glycerol to 2,3-Butanediol and Acetoin by Serratia proteamaculans SRWQ1

  • Iman Almuharef
  • Md. Shafiqur Rahman
  • Wensheng QinEmail author
Original Paper
  • 123 Downloads

Abstract

Biodiesel, a renewable and environment friendly biofuel is produced by transesterification process using animal fats and vegetable oils. However, the flourishing of biodiesel industries has led to produce a huge amount (10% v/v) of crude glycerol as a core by-product, created an overflow problem. Therefore, biotransformation of glycerol into biofuel and other value-added products is one of the promising applications of glycerol due to its high availability at low cost. In this study, we report the capability of converting glycerol as a sole carbon source to 2,3-butanediol (2,3-BDO) and acetoin by using a newly isolated Serratia proteamaculans SRWQ1 strain in batch biotransformation process under aerobic condition. Strain SRWQ1 displayed a maximum up to 18.43 ± 1.55 g/L of 2,3-BDO, yielding 0.4 g/g using 49.0 g/L glycerol which was 98.0% of glycerol utilization. The strain SRWQ1 also successfully produced a significant amount of acetoin 8.38 ± 0.76 g/L with yields 0.06 g/g. Moreover, the maximum activity of glycerol dehydrogenase (GDH) which is a key enzyme of glycerol metabolisms was 408.69 ± 0.069 units/mg protein. The newly isolated strain S. proteamaculans SRWQ1 displayed the best ability to synthesize 2,3-BDO and acetoin using glycerol as the sole substrate, and it is the first report on biotransformation of glycerol by S. proteamaculans. Therefore, this aerobic conversion of glycerol to value-added green products 2,3-BDO and acetoin with potential industrial applications would represent a noteworthy alternative to add value for biodiesel production helping biodiesel industries development.

Graphical Abstract

Keywords

Glycerol dehydrogenase Bioconversion Serratia proteamaculans 2,3-Butanediol Acetoin 

Notes

Acknowledgements

This work was financially supported by NSERC-RDF to W. Q. and Saudi Ministry of Higher Education (Award No. KAS8020509) of Saudi Arabia to I. A.

References

  1. 1.
    Chen, Z., Liu, D.: Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol. Biotechnol. Biofuels 9, 205 (2016)CrossRefGoogle Scholar
  2. 2.
    Garlapati, V.K., Shankar, U., Budhiraja, A.: Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol. Rep. 9, 9–14 (2016)CrossRefGoogle Scholar
  3. 3.
    Nanda, M.R., Zhang, Y., Yuan, Z., Qin, W., Ghaziaskar, H.S., Xu, C.C.: Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: a review. Renew. Sustain. Energy Rev. 56, 1022–1031 (2016)CrossRefGoogle Scholar
  4. 4.
    Nwachukwu, R., Shahbazi, A., Wang, L., Ibrahim, S., Worku, M., Schimmel, K.: Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes. AMB Express 2, 20–25 (2012)CrossRefGoogle Scholar
  5. 5.
    Blankschien, M.D., Clomburg, J.M., Gonzalez, R.: Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab. Eng. 12, 409–419 (2010)CrossRefGoogle Scholar
  6. 6.
    Jiang, W., Wang, S., Wang, Y., Fang, B.: Key enzymes catalyzing glycerol to 1,3-propanediol. Biotechnol. Biofuels 9, 57 (2016)CrossRefGoogle Scholar
  7. 7.
    Behr, A., Eilting, J., Irawadi, K., Leschinski, J., Lindner, F.: Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem. 10, 13–30 (2008)CrossRefGoogle Scholar
  8. 8.
    André, A., Diamantopoulou, P., Philippoussis, A., Sarris, D., Komaitis, M., Papanikolaou, S.: Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind. Crops Prod. 31, 407–416 (2010)CrossRefGoogle Scholar
  9. 9.
    Bagheri, S., Julkapli, N.M., Yehye, W.A.: Catalytic conversion of biodiesel derived raw glycerol to value added products. Renew. Sustain. Energy Rev. 41, 113–127 (2015)CrossRefGoogle Scholar
  10. 10.
    Nanda, M.R., Yuan, Z., Qin, W., Ghaziaskar, H.S., Poirier, M.A., Xu, C.C.: Thermodynamic and kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive. Fuel 117, 470–477 (2014)CrossRefGoogle Scholar
  11. 11.
    Menzel, K., Ahrens, K., Zeng, A.P., Deckwer, W.D.: Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnol. Bioeng. 60, 617–626 (1998)CrossRefGoogle Scholar
  12. 12.
    Yang, F., Hanna, M.A., Sun, R.: Value-added uses for crude glycerol–a byproduct of biodiesel production. Biotechnol. Biofuels 5, 13 (2012)CrossRefGoogle Scholar
  13. 13.
    Willke, T., Vorlop, K.-D.: Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 66, 131–142 (2004)CrossRefGoogle Scholar
  14. 14.
    Da Silva, G.P., De Lima, C.J.B., Contiero, J.: Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catal. Today 257, 259–266 (2015)CrossRefGoogle Scholar
  15. 15.
    Johnson, D.T., Taconi, K.A.: The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 26, 338–348 (2007)CrossRefGoogle Scholar
  16. 16.
    Su, C., Liu, Y., Sun, Y., Li, Z.: Complete genome sequence of Serratia sp. YD25 (KCTC 42987) presenting strong antagonistic activities to various pathogenic fungi and bacteria. J. Biotechnol. 245, 9–13 (2017)CrossRefGoogle Scholar
  17. 17.
    Behera, B.C., Yadav, H., Singh, S.K., Mishra, R.R., Sethi, B.K., Dutta, S.K., Thatoi, H.N.: Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J. Genet. Eng. Biotechnol. 15, 169–178 (2017)CrossRefGoogle Scholar
  18. 18.
    Cho, S., Kim, K.D., Ahn, J.H., Lee, J., Kim, S.W., Um, Y.: Selective production of 2,3-butanediol and acetoin by a newly isolated bacterium Klebsiella oxytoca M1. Appl. Biochem. Biotechnol. 170, 1922–1933 (2013)CrossRefGoogle Scholar
  19. 19.
    Ji, X.-J., Huang, H., Ouyang, P.-K.: Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 29, 351–364 (2011)CrossRefGoogle Scholar
  20. 20.
    Li, L., Zhang, L., Li, K., Wang, Y., Gao, C., Han, B., Ma, C., Xu, P.: A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol. Biofuels 6, 123 (2013)CrossRefGoogle Scholar
  21. 21.
    Zhang, X., Yang, T.W., Lin, Q., Xu, M.J., Xia, H.F., Xu, Z.H., Li, H.Z., Rao, Z.M.: Isolation and identification of an acetoin high production bacterium that can reverse transform 2,3-butanediol to acetoin at the decline phase of fermentation. World J. Microbiol. Biotechnol. 27, 2785–2790 (2011)CrossRefGoogle Scholar
  22. 22.
    Chen, X., Xiu, Z., Wang, J., Zhang, D., Xu, P.: Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions. Enzyme Microb. Technol. 33, 386–394 (2003)CrossRefGoogle Scholar
  23. 23.
    Barbirato, F., Himmi, E.H., Conte, T., Bories, A.: 1,3-propanediol production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind. Crops Prod. 7, 281–289 (1998)CrossRefGoogle Scholar
  24. 24.
    Biebl, H., Marten, S., Hippe, H., Deckwer, W.D.: Glycerol conversion to 1,3-propanediol by newly isolated Clostridia. Appl. Microbiol. Biotechnol. 36, 592–597 (1992)CrossRefGoogle Scholar
  25. 25.
    Paudel, Y.P., Qin, W.: Characterization of novel cellulase-producing bacteria isolated from rotting wood samples. Appl. Biochem. Biotechnol. 177, 1186–1198 (2015)CrossRefGoogle Scholar
  26. 26.
    Wang, S., Lin, C., Liu, Y., Shen, Z., Jeyaseelan, J., Qin, W.: Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment. Int. J. Biochem. Mol. Biol. 7, 1–10 (2016)Google Scholar
  27. 27.
    Zhang, L., Yang, Y., Sun, J., Shen, Y., Wei, D., Zhu, J., Chu, J.: Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour. Technol. 101, 1961–1967 (2010)CrossRefGoogle Scholar
  28. 28.
    Wang, Y., Tao, F., Xu, P.: Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2, 3-butanediol formation in Klebsiella. J. Biol. Chem. 289, 6080–6090 (2014)CrossRefGoogle Scholar
  29. 29.
    Gonzalez, R., Murarka, A., Dharmadi, Y., Yazdani, S.S.: A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab. Eng. 10, 234–245 (2008)CrossRefGoogle Scholar
  30. 30.
    Tian, P.-F., Tan, T.-W.: Progress in metabolism and crucial enzymes of glycerol conversion to 1, 3-propanediol. Chin. J. Biotechnol. 23, 201–205 (2007)Google Scholar
  31. 31.
    Raj, S.M., Rathnasingh, C., Jo, J.E., Park, S.: Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem. 43, 1440–1446 (2008)CrossRefGoogle Scholar
  32. 32.
    Ashok, S., Raj, S.M., Ko, Y., Sankaranarayanan, M., Zhou, S., Kumar, V., Park, S.: Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ∆glpK∆dhaT. Metab. Eng. 15, 10–24 (2013)CrossRefGoogle Scholar
  33. 33.
    Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)CrossRefGoogle Scholar
  34. 34.
    Gerchman, Y., Schnitzer, A., Gal, R., Mirsky, N., Chinkov, N.: A simple rapid gas-chromatography flame-ionization-detector (GC-FID) method for the determination of ethanol from fermentation processes. Afr. J. Biotechnol. 11, 3612–3616 (2012)Google Scholar
  35. 35.
    Polburee, P., Yongmanitchai, W., Lertwattanasakul, N., Ohashi, T., Fujiyama, K., Limtong, S.: Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Fungal Biol. 119, 1194–1204 (2015)CrossRefGoogle Scholar
  36. 36.
    Rodriguez, A., Wojtusik, M., Ripoll, V., Santos, V.E., Garcia-Ochoa, F.: 1,3-Propanediol production from glycerol with a novel biocatalyst Shimwellia blattae ATCC 33430: operational conditions and kinetics in batch cultivations. Bioresour. Technol. 200, 830–837 (2016)CrossRefGoogle Scholar
  37. 37.
    Rahman, M.S., Yuan, Z., Ma, K., Xu, C., Qin, W.: Aerobic conversion of glycerol to 2, 3-butanediol by a novel Klebsiella variicola SRP3 strain. J. Microbiol. Biochem. Technol. 7, 299–304 (2015)CrossRefGoogle Scholar
  38. 38.
    Rahman, M.S., Xu, C.C., Ma, K., Guo, H., Qin, W.: Utilization of by-product glycerol from bio-diesel plants as feedstock for 2,3-butanediol accumulation and biosynthesis genes response of Klebsiella variicola SW3. Renew. Energy 114, 1272–1280 (2017)CrossRefGoogle Scholar
  39. 39.
    Rahman, M.S., Xu, C.C., Qin, W.: Biotransformation of biodiesel-derived crude glycerol using newly isolated bacteria from environmental consortia. Process Biochem. 63, 177–184 (2017)CrossRefGoogle Scholar
  40. 40.
    Jeon, S., Kim, D.K., Song, H., Lee, H.J., Park, S., Seung, D., Chang, Y.K.: 2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation. J. Biosci. Bioeng. 117, 464–470 (2014)CrossRefGoogle Scholar
  41. 41.
    Vivijs, B., Moons, P., Geeraerd, A.H., Aertsen, A., Michiels, C.W.: 2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge. Int. J. Food Microbiol. 175, 36–44 (2014)CrossRefGoogle Scholar
  42. 42.
    Cho, S., Kim, T., Woo, H.M., Kim, Y., Lee, J., Um, Y.: High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol. Biofuels 8, 146–157 (2015)CrossRefGoogle Scholar
  43. 43.
    Rahman, M.S., Xu, C.C., Ma, K., Nanda, M., Qin, W.: High production of 2,3-butanediol by a mutant strain of the newly isolated Klebsiella pneumoniae SRP2 with increased tolerance towards glycerol. Int. J. Biol. Sci. 13, 308–318 (2017)CrossRefGoogle Scholar
  44. 44.
    Taneja, K., Bajaj, B.K., Kumar, S., Dilbaghi, N.: Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media. 3 Biotech. 7, 184–190 (2017)CrossRefGoogle Scholar
  45. 45.
    Tchakouteu, S.S., Kalantzi, O., Gardeli, C., Koutinas, A.A., Aggelis, G., Papanikolaou, S.: Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J. Appl. Microbiol. 118, 911–927 (2015)CrossRefGoogle Scholar
  46. 46.
    Jensen, T.O., Kvist, T., Mikkelsen, M.J., Christensen, P.V., Westermann, P.: Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum. J. Ind. Microbiol. Biotechnol. 39, 709–717 (2012)CrossRefGoogle Scholar
  47. 47.
    Biebl, H., Zeng, A.P., Menzel, K., Deckwer, W.D.: Fermentation of glycerol to 1, 3-propanediol and 2, 3-butanediol by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 50, 24–29 (1998)CrossRefGoogle Scholar
  48. 48.
    Saxena, R.K., Anand, P., Saran, S., Isar, J.: Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol. Adv. 27, 895–913 (2009)CrossRefGoogle Scholar
  49. 49.
    Xu, Y.Z., Guo, N.N., Zheng, Z.M., Ou, X.J., Liu, H.J., Liu, D.H.: Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnol. Bioeng. 104, 965–972 (2009)CrossRefGoogle Scholar
  50. 50.
    Sarchami, T., Munch, G., Johnson, E., Kießlich, S., Rehmann, L.: A review of process-design challenges for industrial fermentation of butanol from crude glycerol by non-biphasic Clostridium pasteurianum. Fermentation 2, 1–33 (2016)CrossRefGoogle Scholar
  51. 51.
    Vieira, P.B., Kilikian, B.V., Bastos, R.V., Perpetuo, E.A., Nascimento, C.A.O.: Process strategies for enhanced production of 1,3-propanediol by Lactobacillus reuteri using glycerol as a co-substrate. Biochem. Eng. J. 94, 30–38 (2015)CrossRefGoogle Scholar
  52. 52.
    Nakamura, C.E., Whited, G.M.: Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459 (2003)CrossRefGoogle Scholar
  53. 53.
    Kim, T., Cho, S., Woo, H.M., Lee, S.M., Lee, J., Um, Y., Seo, J.H.: High production of 2,3-butanediol from glycerol without 1,3-propanediol formation by Raoultella ornithinolytica B6. Appl. Microbiol. Biotechnol. 101, 2821–2830 (2017)CrossRefGoogle Scholar
  54. 54.
    Ripoll, V., De Vicente, G., Morán, B., Rojas, A., Segarra, S., Montesinos, A., Tortajada, M., Ramón, D., Ladero, M., Santos, V.E.: Novel biocatalysts for glycerol conversion into 2,3-butanediol. Process Biochem. 51, 740–748 (2016)CrossRefGoogle Scholar
  55. 55.
    Sun, J., Rao, B., Zhang, L., Shen, Y., Wei, D.: Extraction of acetoin from fermentation broth using an acetone/phosphate aquous two-phase system. Chem. Eng. Commun. 199, 1492–1503 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Iman Almuharef
    • 1
  • Md. Shafiqur Rahman
    • 1
    • 2
  • Wensheng Qin
    • 1
    Email author
  1. 1.Department of BiologyLakehead UniversityThunder BayCanada
  2. 2.Department of MicrobiologyUniversity of ChittagongChittagongBangladesh

Personalised recommendations