Waste and Biomass Valorization

, Volume 10, Issue 7, pp 1845–1855 | Cite as

Combined Effects of Ionic Liquid and Tungsten–Halogen Radiation on Heterogeneous Hydrolysis Kinetics of Waste Papaya Epidermis for Production of Total Reducing Sugar

  • Swapnendu Chatterjee
  • Sourav Barman
  • Rajat ChakrabortyEmail author
Original Paper


This article reports on optimization and kinetic modeling of Amberlyst-36 heterogeneous catalytic hydrolysis of papaya (Carica Papaya) epidermis (PE) in conjunction with ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIM]Cl) for total reducing sugar (TRS) production. The intensification effects in presence of tungsten–halogen radiator (THR) on sequential pretreatment and hydrolysis have been optimized. In pretreatment and hydrolysis, the optimized factors were 70 and 80 °C reactor temperature, 20 and 10 min batch time, water to PE ratio (w/w) of 5 and 20 respectively. An optimum 2.5 (w/w) NH4OH loading in pretreatment while 7.5 wt% catalyst concentration and 20 (w/w) [BMIM]Cl loading in hydrolysis using the tungsten–halogen radiated reactor (THRR) yielded maximum 89.02 mol% TRS which was significantly greater than that obtained (37.41 mol%) through the conventionally heated reactor (CHR). Eley–Rideal mechanism best fitted the hydrolysis kinetics while pseudo-homogeneous model could best represent pretreatment kinetics. Remarkably, the larger activation energy (69.02 kJ/mol) in CHR in comparison with THRR evidently established the greater energy-efficiency of the THRR system. The evaluated kinetic parameters can be useful for reactor design and scale-up studies. The developed energy-efficient, green hydrolysis for optimum TRS synthesis from papaya epidermis also provides sustainable valorization of similar lignocellulosic biomass waste.

Graphical Abstract


Papaya epidermis Tungsten-halogen radiation Total reducing sugar synthesis Factorial optimization Heterogeneous kinetic models Lignocellulosic biomass 



Initial glucose concentration (mol/L) during pretreatment


Initial glucose concentration (mol/L) during AILCH


Concentration of glucose (mol/L) during pretreatment


Concentration of glucose (mol/L) during AILCH


Concentration of raw papaya epidermis (mol/L)


Concentration of pretreated papaya (mol/L)

\({C_\omega }\)

Concentration of water (mol/L) during pretreatment

\({C_\omega }\)

Concentration of water (mol/L) during AILCH


Pre-exponential factor


Activation energy (kJ/mol)


TRS in pretreatment




Number of replications


Reaction rate constants for formation of TRS in pretreatment (L/mol min)


Reaction rate constants for formation of TRS in AILCH (L/mol min)


Decomposition of TRS in pretreatment (min− 1)


Decomposition of TRS in AILCH (min− 1)

\({K_\omega }\)

Adsorption equilibrium constant of water (L/mol)


Surface reaction rate constant (L/mol min)


Desorption equilibrium constant of glucose (L/mol)


Apparent reaction rate constant for Eley–Rideal kinetic model (L/mol min)


Number of experiments performed in specified parametric combinations




Raw papaya epidermis


Pretreated papaya epidermis


Gas constant (kJ/mol K)


Surface reaction rate for ER kinetic model (mol/L min)


Rate of formation of TRS in pretreatment (mol/L min)


Rate of formation of TRS in AILCH (mol/L min)




Signal to noise ratio


Temperatures at otherwise optimal conditions derived through TOD


Temperatures at otherwise optimal conditions derived through TOD


Undesired product



Greek Letters


Catalyst concentration in subsequent AILCH process


NH4OH loading in pretreatment process


THRR temperature in subsequent AILCH process (°C)


Batch time in subsequent AILCH process (min)


Reactor temperature in pretreatment process (°C)


Batch time in pretreatment process (min)


Water to PE weight ratio in pretreatment process


Water to PPE weight ratio in subsequent AILCH process


TRS yield



The reactor used in this work was financed by University Grants Commission, New Delhi, India through Major Research Project [F. No. 43–161/2014 (SR)].

Supplementary material

12649_2018_220_MOESM1_ESM.doc (335 kb)
Supplementary material 1 (DOC 335 KB)


  1. 1.
    Juarez, G.F.Y., Pabiloña, K.B.C., Manlangit, K.B.L., Go, A.W.: Direct dilute acid hydrolysis of spent coffee grounds: a new approach in sugar and lipid recovery. Waste Biomass Valor. (2017). Google Scholar
  2. 2.
    Pocan, P., Bahcegul, E., Oztop, M.H., Hamamci, H.: Enzymatic hydrolysis of fruit peels and other lignocellulosic biomass as a source of Sugar. Waste Biomass Valor. (2017). Google Scholar
  3. 3.
    Tan, I.S., Lee, K.T.: Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydr Polym. 124, 311–321 (2015)CrossRefGoogle Scholar
  4. 4.
    Vikash, O.V., Umesh, M.: Bioconversion of papaya peel waste in to vinegar using Acetobacter Aceti. Microbiology. 3, 409–411 (2014)Google Scholar
  5. 5.
    Kamaruzzaman, M., Chowdhury, S.D., Podder, C.K., Pramanik, M.A.H.: Dried papaya skin as a dietary ingredient for broiler chickens. Brit. Poult. Sci. 46, 390–393 (2005)CrossRefGoogle Scholar
  6. 6.
    Sittiruk, P., Siriporn, D.: Hydrolysis of raw hide using proteolytic enzyme extracted from papaya latex. Korean J. Chem. Eng. 23, 972–976 (2006)CrossRefGoogle Scholar
  7. 7.
    Wankasi, D., Tarawou, T.J., Yabefa, J.A.: Furfural production from the peels of ripe pawpaw (Carica papaya L.) and pineapple (Ananas comosus) fruits by acid catalyzed hydrolysis. Am. J. Food Nutr. 1, 136–140 (2011)CrossRefGoogle Scholar
  8. 8.
    Patidar, M.K., Nighojkar, S., Kumar, A., Nighojkar, A.: Papaya peel valorization for production of acidic pectin methylesterase by Aspergillus tubingensis and its application for fruit juice clarification. Biocatal. Agric. Biotechnol. 6, 58–67 (2016)CrossRefGoogle Scholar
  9. 9.
    Gamez, S., Cabriales, J.J.G., Ramırez, J.A., Garrote, G., Vazquez, M.: Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J. Food Eng. 74, 78–88 (2006)CrossRefGoogle Scholar
  10. 10.
    Romero, I., Ruiz, E., Castro, E., Moya, M.: Acid hydrolysis of olive tree biomass. Chem. Eng. Res. Des. 88, 633–640 (2010)CrossRefGoogle Scholar
  11. 11.
    Rodrıguez, E.G., Rivera, O.M.P., Enrıquez, L.J., Ramırez, O.A., Vazquez, M.: Acid hydrolysis of wheat straw: a kinetic study. Biomass. Bioenerg. 36, 346–355 (2012)CrossRefGoogle Scholar
  12. 12.
    Takagaki, A., Tagusagawa, C., Domen, K.: Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chem. Commun. 42, 5363–5365 (2008)CrossRefGoogle Scholar
  13. 13.
    Onda, A., Ochi, A., Yanagisawa, K.: Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 10, 1033–1037 (2008)CrossRefGoogle Scholar
  14. 14.
    Kobayashi, H., Komanoya, T., Hara, K., Fukuoka, A.: Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem. 3, 440–443 (2010)CrossRefGoogle Scholar
  15. 15.
    Tsubaki, S., Oono, K., Onda, A., Yanagisawa, K., Mitani, T., Azuma, J.: Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation. Carbohyd. Polym. 137, 594–599 (2016)CrossRefGoogle Scholar
  16. 16.
    Sun, B., Duan, L., Peng, G., Li, X., Xu, A.: Efficient production of glucose by microwave-assisted acid hydrolysis of cellulose hydrogel. Bioresour. Technol. 192, 253–256 (2015)CrossRefGoogle Scholar
  17. 17.
    Fan, J., Debruyn, M., Zhu, Z., Budarin, V., Gronnow, M., Gomez, L.D., Macquarrie, D., Clark, J.: Microwave-enhanced formation of glucose from cellulosic waste. Chem. Eng. Process. 71, 37–42 (2013)CrossRefGoogle Scholar
  18. 18.
    Mikkola, J.P., Kirilin, A., Tuuf, J.C., Pranovich, A., Holmbom, B., Kustov, L.M.: Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem. 9, 1229–1237 (2007)CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Zhao, Z.K.: Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohyd. Res. 344, 2069–2072 (2009)CrossRefGoogle Scholar
  20. 20.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002)CrossRefGoogle Scholar
  21. 21.
    Kilpelainen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S., Argyropoulos, D.S.: Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55, 9142–9148 (2007)CrossRefGoogle Scholar
  22. 22.
    Rinaldi, R., Palkovits, R., Schüth, F.: Depolymerization of cellulose using solid catalysts in ionic liquids. Angew. Chem. Int. Ed. 47, 8047–8050 (2008)CrossRefGoogle Scholar
  23. 23.
    Rinaldi, R., Meine, N., Stein, J.V., Palkovits, R., Schüth, F.: Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? ChemSusChem 3, 266–276 (2010)CrossRefGoogle Scholar
  24. 24.
    Zhang, Z.H., Zhao, Z.K.: Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr. Res. 344, 2069–2072 (2009)CrossRefGoogle Scholar
  25. 25.
    Lee, K.M., Ngoh, G.C., Chua, A.S.M.: Ionic liquid-mediated solid acid saccharification of sago waste: kinetic, ionic liquid recovery and solid acid catalyst reusability study. Ind. Crop. Prod. 77, 415–423 (2015)CrossRefGoogle Scholar
  26. 26.
    Chakraborty, R., Sahu, H.: Intensification of biodiesel production from waste goat tallow using infrared radiation: process evaluation through response surface methodology and artificial neural network. Appl. Energy. 114, 827–836 (2014)CrossRefGoogle Scholar
  27. 27.
    Chakraborty, R., Mandal, E.: Fast and energy efficient glycerol esterification with lauric acid by near and far-infrared irradiation: Taguchi optimization and kinetics evaluation. J. Taiwan Inst Chem. Eng. 50, 93–99 (2015)CrossRefGoogle Scholar
  28. 28.
    Aguilar, R., Ramirez, J.A., Garrote, G., Vazquez, M.: Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food. Eng. 55, 309–318 (2002)CrossRefGoogle Scholar
  29. 29.
    Chong, A.R., Ramirez, J.A., Garrote, G., Vazquez, M.: Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J. Food. Eng. 61, 143–152 (2004)CrossRefGoogle Scholar
  30. 30.
    Kumar, S., Dheeran, P., Singh, S.P., Mishra, I.M., Adhikari, D.K.: Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse. Renew. Energy 83, 850–858 (2015)CrossRefGoogle Scholar
  31. 31.
    Schmid, B., Döker, M., Gmehling, J.: Esterification of ethylene glycol with acetic acid catalyzed by Amberlyst 36. Ind. Eng. Chem. Res. 47, 698–703 (2008)CrossRefGoogle Scholar
  32. 32.
    Tsai, Y., Lin, H., Lee, M.: Kinetics of catalytic esterification of propionic acid with methanol over Amberlyst 36. Ind. Eng. Chem. Res. 50, 1171–1176 (2011)CrossRefGoogle Scholar
  33. 33.
    Akyalcin, S., Altiokka, M.R.: Kinetics of esterification of acetic acid with 1-octanol in the presence of Amberlyst 36. Appl. Catal. A. 429–430, 79–84 (2012)CrossRefGoogle Scholar
  34. 34.
    Oh, S.J., Park, J., Na, J.G., Oh, Y.K., Chang, Y.K.: Production of 5-hydroxymethylfurfural from agarose by using a solid acid catalyst in dimethyl sulfoxide. RSC Adv. 5, 47983–47989 (2015)CrossRefGoogle Scholar
  35. 35.
    Taguchi, G.: Introduction to Quality Engineering. Asian Productivity Organization, Tokyo (1986)Google Scholar
  36. 36.
    Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)CrossRefGoogle Scholar
  37. 37.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  38. 38.
    Namchot, W., Panyacharay, N., Jonglertjunya, W., Sakdaronnarong, C.: Hydrolysis of delignified sugarcane bagasse using hydrothermaltechnique catalyzed by carbonaceous acid catalysts. Fuel. 116, 608–616 (2014)CrossRefGoogle Scholar
  39. 39.
    Girisuta, B., Janssen, L.P.B.M., Heeres, H.J.: Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind. Eng. Chem. Res. 46, 1696–1708 (2007)CrossRefGoogle Scholar
  40. 40.
    Siril, P.F., Cross, H.E., Brown, D.R.: New polystyrene sulfonic acid resin catalysts with enhanced acidic and catalytic properties. J. Mol. Catal. A: Chem. 279, 63–68 (2008)CrossRefGoogle Scholar
  41. 41.
    Yadav, G.D., Thathagar, M.B.: Esterification of maleic acid with ethanol over cation-exchange resin catalysts. React. Funct. Polym. 52, 99–110 (2002)CrossRefGoogle Scholar
  42. 42.
    Dwiatmoko, A.A., Choi, J.W., Suh, D.J., Suha, Y.W., Kung, H.H.: Understanding the role of halogen-containing ionic liquids in the hydrolysis of cellobiose catalyzed by acid resins. Appl. Catal. A. 387, 209–214 (2010)CrossRefGoogle Scholar
  43. 43.
    Rinaldi, R., Meine, N., Stein, J.V., Palkovits, R., Schuth, F.: Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? ChemSusChem 3, 266–276 (2010)CrossRefGoogle Scholar
  44. 44.
    Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959)CrossRefGoogle Scholar
  45. 45.
    Malester, A.I., Green, M., Kimchie, S., Shelef, G.: The effectof the neutralizing capacity of cellulosic materials on the kinetics of cellulose dilute acid hydrolysis. Biol. Waste. 26, 115–124 (1988)CrossRefGoogle Scholar
  46. 46.
    Rafiqul, I.S.M., Sakinah, A.M.M.: Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chem. Eng. Sci. 71, 431–437 (2012)CrossRefGoogle Scholar
  47. 47.
    Gremlich, H.U.: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B5, pp. 429–469. VCH, Weinheim (1994)Google Scholar
  48. 48.
    Bauer, B., Floyd, T.A.: Monitoring of glucose in biological fluids by Fourier–transform infrared spectrometry with a cylindrical internal reflectance cell. Anal. Chim. Acta. 197, 295–301 (1987)CrossRefGoogle Scholar
  49. 49.
    Ward, K.J., Haaland, D.M., Robinson, M.R., Eaton, R.P.: Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy. Appl. Spectrosc. 46, 959–965 (1992)CrossRefGoogle Scholar
  50. 50.
    Petibois, C., Rigalleau, V., Melin, A., Perromat, A., Cazorla, G., Gin, H., Deleris, G.: Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy. Clin. Chem. 45(9), 1530–1535 (1999)Google Scholar
  51. 51.
    Wang, L., Zhang, Y., Gao, P., Shi, D., Liu, H., Gao, H.: Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol. Bioeng. 93, 443–456 (2006)CrossRefGoogle Scholar
  52. 52.
    Meyabadi, T.F., Dadashian, F., Sadeghi, G.M.M., Asl, H.E.Z.: Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder. Technol. 261, 232–240 (2014)CrossRefGoogle Scholar
  53. 53.
    Satyamurthy, P., Jain, P., Balasubramanya, R.H., Vigneshwaran, N.: Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohyd. Polym. 83, 122–129 (2011)CrossRefGoogle Scholar
  54. 54.
    Oh, S.Y., Yoo, D., Shin, Y., Seo, G.: FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd. Res. 340, 417–428 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Swapnendu Chatterjee
    • 1
  • Sourav Barman
    • 1
  • Rajat Chakraborty
    • 1
    Email author
  1. 1.Department of Chemical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations