Waste and Biomass Valorization

, Volume 10, Issue 7, pp 1857–1871 | Cite as

Characterization and Integrated Process of Pretreatment and Enzymatic Hydrolysis of Corn Straw

  • Alma Hortensia Serafín MuñozEmail author
  • Carlos Eduardo Molina Guerrero
  • Norma Leticia Gutierrez Ortega
  • Julio Cesar Leal Vaca
  • Aurelio Alvarez Vargas
  • Carmen Cano Canchola
Original Paper


The chemical pretreatment of biomass has been integrated with enzyme production through the recycling of aqueous fractions. Alkaline/H2O2 delignification of corn straw (CS) was performed to obtain a 75.1% w/w cellulose solid fraction and to dissolve 93.4 and 83.5%, of the original lignin and hemicelluloses, respectively. Next, a Pleurotus cystidiosus native strain was left to grow for 120 h in the resulting liquid fraction. After filtering the cells, the liquid medium was used alone or combined with the commercial enzyme. To reduce chemical and water usage, the liquid fraction from pretreatment was recycled to perform another treatment; the pH, CS, and H2O2 were adjusted. A process integrated with P. cystidiosus was grown again and enzymatic hydrolysis was realized. Samples of every liquid fraction from the fungal growing medium were analyzed to determine the chemical oxygen demand (OCD), glucose (Glu), xylose (Xyl), and total reducing sugars (RS). Separately, to obtain valuable polymers from this integration process, solid hemicellulose and lignin were isolated from the remaining liquid fractions through pH variation. The composition of the samples was determined using scanning electron microscopy (SEM), optical stereoscopic microscopy and Fourier transform infrared spectroscopy (FT-IR) and was compared with commercial homologs. The maximum conversion of cellulose to glucose by the obtained liquid fraction of the fungal medium was 61.3 ± 0.9% of the theoretical conversion yield of the commercial enzyme. Similarly, the conversion of hemicelluloses to xylose was 69.5 ± 1.5%. Finally, in this work, an integrated platform for cellulose, hemicellulose, lignin, enzymatic extract and sugars production, which also significantly reduces water consumption, was proposed.


Alkaline delignification Cellulose Hemicellulose Lignin Lignocellulosic biomass Pleurotus cystidiosus Biorefinery 



Corn straw


Pretreated corn straw


Liquid fractions from PCS


Recycled FCS


Filtrates of cultures from FCS + mycelium


Filtrates of cultures from RFCS + mycelium


Significant statistical difference


Standard deviation



The authors would like to thank Dr. Hector Arturo Ruiz Leza (Autonomous University of Coahuila), Dr. Alfredo Martinez Jímenez (National Autonomous University of Mexico), Dr. Agustín Castro Montoya (University of Michoacán of San Nicolás de Hidalgo), the Thematic Network of Bioenergy (CONACYT Project) and FINNOVATEG CFINN0186 (SICES Project). To the Directorate for Research Support and Postgraduate Programs at the University of Guanajuato for their support in the translation and editing of the English-language version of this article.


The funding was provided by RED TEMATICA DE BIOENERGIA.


  1. 1.
    Hellin, J., et al.: Maize stover use and sustainable crop production in mixedcrop–livestock systems in Mexico. Field Crops Res. 153, 12–21 (2013)Google Scholar
  2. 2.
    Nacional, S.d.I.A.y.P.: Cierre de la producción agrícola por estado., p. 2015. Accessed November 2015
  3. 3.
    Guzmán Soria, E., et al., Análisis de los costos de producción de maíz en la Región Bajío de Guanajuato. Análisis Económico XXIX(70), 145–155 (2014)Google Scholar
  4. 4.
    Santibañez-Aguilar, J.E.G.-C., J.B., Ponce Ortega, J.M., Serna-González, M., El-Halwagi, M.M.: Optimal planning of a biomass conversion system considering economic and environmental aspects. Ind. Eng. Chem. Res. 50(14), 8558–8570 (2011)Google Scholar
  5. 5.
    Kudanga, T., Le Roes-Hill, M.: Laccase applications in biofuels production: current status and future prospects. Appl. Microbiol. Biotechnol. 98(15), 6525–6542 (2014)Google Scholar
  6. 6.
    Rosales-Colunga, L.M., Martinez-Antonio, A.: Engineering Escherichia coli K12 MG1655 to use starch. Microb. Cell Fact. 13, 74 (2014)Google Scholar
  7. 7.
    Karnaouri, A., et al.: Development of thermophilic tailor-made enzyme mixtures for the bioconversion of agricultural and forest residues. Front Microbiol. 7, 177 (2016)Google Scholar
  8. 8.
    Marousek, J., et al.: Techno-economic assessment of processing the cellulose casings waste. Clean Technol. Environ. Policy 17, 2441–2446 (2015)Google Scholar
  9. 9.
    Martınez-Guido, S., et al.: Optimal reconfiguration of a sugar cane industry to yield an integrated biorefinery. Clean Technol. Environ. Policy. 18, 553–562 (2016)Google Scholar
  10. 10.
    Dominguez, E., et al.: A biorefinery approach based on fractionation with a cheap industrial by-product for getting value from an invasive woody species. Bioresour. Technol. 173, 301–308 (2014)Google Scholar
  11. 11.
    Escamilla-Alvarado, C., Poggi-Varaldo, H.M., Ponce-Noyola, M.T.: Use of organic waste for the production of added-value holocellulases with Cellulomonas flavigena PR-22 and Trichoderma reesei MCG 80. Waste Manage. Res. 31(8), 849–858 (2013)Google Scholar
  12. 12.
    Perez-Pimienta, J.A., et al.: Evaluation of agave bagasse recalcitrance using AFEX, autohydrolysis, and ionic liquid pretreatments. Bioresour. Technol. 211, 216–223 (2016)Google Scholar
  13. 13.
    Fava, F., et al.: Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnol. 32(1), 100–108 (2015)Google Scholar
  14. 14.
    Medina Arellano, M.D.J., et al.: The quest for stem cell science regulation in Mexico: ethical, legal and religious controversies. University of Manchester (2012)Google Scholar
  15. 15.
    Pereira, F.B., et al.: Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresour. Technol. 161, 192–199 (2014)Google Scholar
  16. 16.
    Cynthia, A.A., et al.: Reduction in personal exposures to particulate matter and carbon monoxide as a result of the installation of a Patsari improved cook stove in Michoacan Mexico. Indoor Air. 18(2), 93–105 (2008)Google Scholar
  17. 17.
    Li, H., et al.: Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. Biotechnol Biofuels. 7, 50 (2014)Google Scholar
  18. 18.
    Poggi-Varaldo, H.M., et al.: Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Waste Manage. Res. 32(5), 353–365 (2014)Google Scholar
  19. 19.
    Ruiz, H.A., et al.: Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr. Polym. 92(2), 2154–2162 (2013)Google Scholar
  20. 20.
    Michelin, M., et al., Cellulose from lignocellulosic waste. Polysaccharides: Bioactivity Biotechnol. 475–511 (2015)Google Scholar
  21. 21.
    Gonzalez-Delgado, A.D., Kafarov, V., El-Halwagi, M.: Development of a topology of microalgae-based biorefinery: process synthesis and optimization using a combined forward–backward screening and superstructure approach. Clean Technol. Environ. Policy. 17, 2213–2228 (2015)Google Scholar
  22. 22.
    Fu, D., Mazza, G., Tamaki, Y.: Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J. Agric. Food Chem. 58(5), 2915–2922 (2010)Google Scholar
  23. 23.
    Srinivasan, N., Ju, L.K.: Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresour. Technol. 101(24), 9785–9791 (2010)Google Scholar
  24. 24.
    Asghar, U., et al.: Effect of alkaline pretreatment on delignification of wheat straw. Nat. Prod. Res. 29(2), 125–131 (2015)Google Scholar
  25. 25.
    Bhalla, A., et al.: Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar. Biotechnol. Biofuels. 9, 34 (2016)Google Scholar
  26. 26.
    Cai, D., et al.: Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation. Bioresour. Technol. 211, 117–124 (2016)Google Scholar
  27. 27.
    Pawłowski, Ł, Biomass for fuel production. CRC Press: Boca Raton. p. 1 (2016)Google Scholar
  28. 28.
    Ramos-Suarez, J.L., et al.: Alkaline and oxidative pretreatments for the anaerobic digestion of cow manure and maize straw: factors influencing the process and preliminary economic viability of an industrial application. Bioresour. Technol. 241, 10–20 (2017)Google Scholar
  29. 29.
    Chen, Y., et al.: Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol. Biofuels. 6(1), 8 (2013)MathSciNetGoogle Scholar
  30. 30.
    Masui, A., et al.: Enzymatic hydrolysis of gelatin layers on used lith film using thermostable alkaline protease for recovery of silver and PET film. Biotechnol. Prog. 20(4), 1267–1269 (2004)Google Scholar
  31. 31.
    Talebnia, F., Karakashev, D., Angelidaki, I.: Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 101(13), 4744–4753 (2010)Google Scholar
  32. 32.
    Octave, S., Thomas, D.: Biorefinery: toward an industrial metabolism. Biochimie 91(6), 659–664 (2009)Google Scholar
  33. 33.
    Bauer, A., et al.: Steam explosion pretreatment for enhancing biogas production of late harvested hay. Bioresour. Technol. 166, 403–410 (2014)Google Scholar
  34. 34.
    Brethauer, S., Studer, M.H.: Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals: a review. Chimia 69(10), 572–581 (2015)Google Scholar
  35. 35.
    Lau, M.W., Gunawan, C., Dale, B.E.: The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotechnol. Biofuels. 2, 30 (2009)Google Scholar
  36. 36.
    Merali, Z., et al.: Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation. Bioresour. Technol. 131, 226–234 (2013)Google Scholar
  37. 37.
    Kaushik, A., Singh, M.: Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr. Res. 346(1), 76–85 (2011)Google Scholar
  38. 38.
    Alvira, P., et al.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101(13), 4851–4861 (2010)Google Scholar
  39. 39.
    Zhu, S., et al.: Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw. Biosyst. Engine 93, 279–283 (2006)Google Scholar
  40. 40.
    Chandra, R.P., et al.: Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. Adv. Biochem. Eng. Biotechnol. 108, 67–93 (2007)Google Scholar
  41. 41.
    Chen, B.Y., Chen, S.W., Wang, H.T.: Use of different alkaline pretreatments and enzyme models to improve low-cost cellulosic biomass conversion. Biomass Bioenerg. 39, 182–191 (2012)Google Scholar
  42. 42.
    Gould, J.M.: Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng. 26(1), 46–52 (1984)Google Scholar
  43. 43.
    Liu, T., et al.: Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability. Biotechnol Biofuels. 7(1), 48 (2014)Google Scholar
  44. 44.
    Tang, Y., et al.: Enhancement of fermentable sugar yield by competitive adsorption of non-enzymatic substances from yeast and cellulase on lignin. BMC Biotechnol. 14, 21 (2014)Google Scholar
  45. 45.
    Balan, V., et al.: Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. J Ind Microbiol Biotechnol. 35(5), 293–301 (2008)Google Scholar
  46. 46.
    Solis, E.S., Huerta, A.J.: Bárcenas S2002 Nueva variedad de trigo harinero para el bajío. INIFAP. 4(1), 3–22 (2003)Google Scholar
  47. 47.
    Moniz, P., et al.: Characterisation and hydrothermal processing of corn straw towards the selective fractionation of hemicelluloses. Ind. Crops Prod. 50, 145–153 (2013)Google Scholar
  48. 48.
    Molina, C., et al.: Optimization of enzymatic saccharification of wheat straw in a micro-scale system by response surface methodology. Rev. Mex. Ing. Quim. 13(3), 765–778 (2014)Google Scholar
  49. 49.
    Accellerase, G.a., Accellerase® 1500. Genencor, Accellerase®, TRIO TM and Danisco are trademarks or registered trademarks of E. I. du Pont de Nemours and Company or its affiliates., 2011. Danisco, U.S., Inc. 2011. GENENCOR and Accellerase are registered trademarks of Danisco. US Inc. or its affiliated companies.: pp. 1–4Google Scholar
  50. 50.
    Elliston, A., et al.: High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresour. Technol. 134, 117–126 (2013)Google Scholar
  51. 51.
    Brunsbach, F.R., Reineke, W.: Degradation of chloroanilines in soil slurry by specialized organisms. Appl. Microbiol. Biotechnol. 40(2), 402–407 (1993)Google Scholar
  52. 52.
    Gubala, V., et al., A comparison of mono and multivalent linkers and their effect on the colloidal stability of nanoparticle and immunoassays performance. Talanta 81(4–5), 1833–1839 (2010)Google Scholar
  53. 53.
    Miller, G.L.: Use of dinitrosaiicyiic acid reagentfor determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)Google Scholar
  54. 54.
    Norma oficial mexicana NOM-127-SSA1-1994, Salud ambiental, agua para uso y consumo humano-limites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilizacion. SSA, 1994Google Scholar
  55. 55.
    Chen, H.Z., Liu, Z.H., Multilevel composition fractionation process for high-value utilization of wheat straw cellulose. Biotechnol. Biofuels. 137(7), 1–12 (2014)Google Scholar
  56. 56.
    Energy, D.U.S.D.o., Biomass feedstock composition and property database. Department of Energy, Biomass Program. 2006Google Scholar
  57. 57.
    del Rio, J.C., et al.: Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 60(23), 5922–5935 (2012)Google Scholar
  58. 58.
    Khan, T.S., Mubeen, U.: Wheat straw: a pragmatic overview. J. Biol. Sci. 4(6), 673–675 (2012)Google Scholar
  59. 59.
    Sun, R.C., Tomkinson, J., Wang, Y.X., Xiao, B.: Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer 41, 2647–2656 (2000)Google Scholar
  60. 60.
    Han, Q., et al.: Autohydrolysis pretreatment of waste wheat straw for cellulosic ethanol production in a co-located straw pulp mill. Appl. Biochem. Biotechnol. 175(2), 1193–1210 (2015)Google Scholar
  61. 61.
    Kaparaju, P., et al.: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100(9), 2562–2568 (2009)Google Scholar
  62. 62.
    Njoku, S.I., Ahring, B.K., Uellendahl, H.: Pretreatment as the crucial step for a cellulosic ethanol biorefinery: testing the efficiency of wet explosion on different types of biomass. Bioresour. Technol. 124, 105–110 (2012)Google Scholar
  63. 63.
    Gomez, L.D., et al., High-throughput Saccharification assay for lignocellulosic materials. J. Vis. Exp. 53 (2011)Google Scholar
  64. 64.
    Kamm, B., et al.: Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis)—quantification of glucose. Chemosphere 62(1), 97–105 (2006)Google Scholar
  65. 65.
    Koutinas, A.A., Wang, R., Webb, C.: Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat. Biotechnol Bioeng. 85(5), 524–538 (2004)Google Scholar
  66. 66.
    Kuglarz, M., et al.: Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresour. Technol. 200, 639–647 (2016)Google Scholar
  67. 67.
    Merali, Z., et al.: Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnol Biofuels. 8, 23 (2015)Google Scholar
  68. 68.
    Panagiotopoulos, I.A., et al.: Integration of first and second generation biofuels: fermentative hydrogen production from wheat grain and straw. Bioresour. Technol. 128, 345–350 (2013)Google Scholar
  69. 69.
    Reisinger, M., et al.: Wheat bran biorefinery–a detailed investigation on hydrothermal and enzymatic treatment. Bioresour. Technol. 144, 179–185 (2013)Google Scholar
  70. 70.
    Silveira, M.H., et al.: Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem. 8(20), 3366–3390 (2015)Google Scholar
  71. 71.
    Yuan, T.Q., et al.: Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: effect of integrated pretreatment on enzymatic hydrolysis. Bioresour. Technol. 144, 429–434 (2013)Google Scholar
  72. 72.
    Zahed, O., et al., Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiol. 61(3), 179–189 (2015)Google Scholar
  73. 73.
    Zhang, Y.H., et al.: Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng. 97(2), 214–223 (2007)Google Scholar
  74. 74.
    DoKyoung, L., et al., Composition of herbaceous biomass feedstocks. SunGrant 6–12 (2007)Google Scholar
  75. 75.
    Kristensen, J.B., et al.: Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels. 1(1), 5 (2008)Google Scholar
  76. 76.
    Hansen, M.A., et al.: Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.)—the impact of lignin relocation and plant tissues on enzymatic accessibility. Bioresour. Technol. 102(3), 2804–2811 (2011)Google Scholar
  77. 77.
    Wang, Q., et al.: Cell wall disruption in low temperature NaOH/urea solution and its potential application in lignocellulose pretreatment. Cellulose 22, 3559–3568 (2015)Google Scholar
  78. 78.
    Bussemaker, M.J., Xu, F., Zhang, D.: Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Bioresour. Technol. 148, 15–23 (2013)Google Scholar
  79. 79.
    Vasquez, D., et al.: Thermochemical pretreatment of lignocellulose residues: assessment of the effect on operational conditions and their interactions on the characteristics of leachable fraction. Water Sci. Technol. 72(11), 1903–1911 (2015)Google Scholar
  80. 80.
    Silva-Fernandes, T., et al.: Hydrothermal pretreatment of several lignocellulosic mixtures containing wheat straw and two hardwood residues available in Southern Europe. Bioresour. Technol. 183, 213–220 (2015)Google Scholar
  81. 81.
    Zhang, J., Tang, M., Viikari, L.: Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour. Technol. 121, 8–12 (2012)Google Scholar
  82. 82.
    Ibbett, R., et al.: Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility. Biotechnol Biofuels. 6(1), 33 (2013)Google Scholar
  83. 83.
    Carr, M.E., Doane, W.M.: Modification of wheat straw in a high-shear mixer. Biotechnol Bioeng. 26(10), 1252–1257 (1984)Google Scholar
  84. 84.
    Wang, Q., et al.: Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes. Bioresour. Technol. 166, 420–428 (2014)Google Scholar
  85. 85.
    Alvarez-Vasco, C., Zhang, X.: Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways. Bioresour. Technol. 150, 321–327 (2013)Google Scholar
  86. 86.
    Pasangulapati, V., et al.: Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresour. Technol. 114, 663–669 (2012)Google Scholar
  87. 87.
    Li, H.Q., et al.: pH pre-corrected liquid hot water pretreatment on corn stover with high hemicellulose recovery and low inhibitors formation. Bioresour. Technol. 153, 292–299 (2014)Google Scholar
  88. 88.
    Klinke, H.B., et al.: Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour. Technol. 82(1), 15–26 (2002)Google Scholar
  89. 89.
    Alencar, B.R.A., et al.: Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover. Bioresour. Technol. 241, 928–935 (2017)Google Scholar
  90. 90.
    Rocha, G.J.M., et al.: Contributing to the environmental sustainability of the second generation ethanol production: delignification of sugarcane bagasse with sodium hydroxide recycling. Ind. Crops Prod. 59(Supplement C), 63–68 (2014)Google Scholar
  91. 91.
    Stoklosa, R.J., et al., Techno-economic comparison of centralized versus decentralized biorefineries for two alkaline pretreatment processes. Biores. Technol. 226(Supplement C), 9–17 (2017)Google Scholar
  92. 92.
    Adapa, P.K., et al., Quantitative analysis of lignocellulosic components of non-treated and steam exploded barley, canola, oat and wheat straw using fourier transform infrared spectroscopy. J. Agric. Sci. Technol. 1939(1250), 177–188 (2011)Google Scholar
  93. 93.
    Alemdar, A., Sain, M.: Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresour. Technol. 99(6), 1664–1671 (2008)Google Scholar
  94. 94.
    Montano-Leyva, B., et al.: Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning. J. Agric. Food Chem. 59(3), 870–875 (2011)Google Scholar
  95. 95.
    Kirtania, K., et al.: In situ synchrotron IR study relating temperature and heating rate to surface functional group changes in biomass. Bioresour. Technol. 151, 36–42 (2014)Google Scholar
  96. 96.
    Yang, H., et al.: Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process. Bioresour. Technol. 207, 361–369 (2016)Google Scholar
  97. 97.
    Zhang, L.H., et al.: Effect of steam explosion on biodegradation of lignin in wheat straw. Bioresour. Technol. 99(17), 8512–8515 (2008)Google Scholar
  98. 98.
    Sabiha-Hanim, S., Siti-Norsafurah, A.M.: Physical properties of hemicellulose films from sugarcane bagasse. Procedia Eng. 42, 1390–1395 (2012)Google Scholar
  99. 99.
    Karp, E., et al.: Alkaline pretreatment of corn stover: bench-scale fractionation and stream characterization. ACS Sustain. Chem. Eng. 2, 1481–1491 (2014)Google Scholar
  100. 100.®ion=MXGoogle Scholar
  101. 101.
    Panda, B.C., et al.: Heteroglycan of an edible mushroom Pleurotus cystidiosus: structural characterization and study of biological activities. Int. J. Biol. Macromol. 95, 833–842 (2017)Google Scholar
  102. 102.
    Atri, N., et al.: Nutritional and neutraceutical composition of five wild culinary-medicinal species of genus Pleurotus (higher Basidiomycetes) from northwest India. Int. J. Med. Mushrooms. 15(1), 49–56 (2013)Google Scholar
  103. 103.
    Madan, M., Thind, K.S.: Physiology of fungi. APH Publishing, 1998 (ISBN 8170249414, 9788170249412$4: pp. 59–50, 240Google Scholar
  104. 104.
    Bettin, F., et al., Growth kinetics, production, and characterization of extracellular laccases from Pleurotus sajor-caju PS-2001. Process Biochem., 46, 758–764 (2011)Google Scholar
  105. 105.
    Zhang, Z., et al.: Synergistic effect of thermostable beta-glucosidase TN0602 and cellulase on cellulose hydrolysis. 3 Biotech. 7(1), 54 (2017)Google Scholar
  106. 106.
    Zhang, H., Xu, Y., Yu, S.: Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Bioresour. Technol. 234, 343–349 (2017)Google Scholar
  107. 107.
    Eichlerova, I., et al.: Screening of Pleurotus ostreatus isolates for their ligninolytic properties during cultivation on natural substrates. Biodegradation 11(5), 279–287 (2000)Google Scholar
  108. 108.
    Pandey, A.K., et al.: Production of ligninolytic enzymes by white rot fungi on lignocellulosic wastes using novel pretreatments. Cell Mol. Biol. 60(5), 41–45 (2014)Google Scholar
  109. 109.
    Pant, D., Adholeya, A.: Enhanced production of ligninolytic enzymes and decolorization of molasses distillery wastewater by fungi under solid state fermentation. Biodegradation. 18(5), 647–659 (2007)Google Scholar
  110. 110.
    Eichlerova, I., et al.: Ligninolytic characteristics of Pleurotus ostreatus strain F6 and its monokaryotic protoplast derivative P19. Can. J. Microbiol. 46(12), 1153–1158 (2000)Google Scholar
  111. 111.
    Malarczyk, E., Jarosz-Wilkolazka, A., Kochmanska-Rdest, J.: Effect of low doses of guaiacol and ethanol on enzymatic activity of fungal cultures. Nonlinearity Biol. Toxicol. Med. 1(2), 167–178 (2003)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Alma Hortensia Serafín Muñoz
    • 1
    Email author
  • Carlos Eduardo Molina Guerrero
    • 2
  • Norma Leticia Gutierrez Ortega
    • 1
  • Julio Cesar Leal Vaca
    • 1
  • Aurelio Alvarez Vargas
    • 3
  • Carmen Cano Canchola
    • 3
  1. 1.División de Ingenierías, Campus GuanajuatoUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de Chihuahua, Circuito 1, Nuevo Campus UniversitarioChihuahuaMexico
  3. 3.División de Ciencias Naturales y Exactas, Campus GuanajuatoUniversidad de GuanajuatoGuanajuatoMexico

Personalised recommendations