Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 7, pp 2045–2055 | Cite as

Influence of Granulated Silico-Manganese Slag on Compressive Strength and Microstructure of Ambient Cured Alkali-Activated Fly Ash Binder

  • S. K. NathEmail author
  • Sanjay Kumar
Original Paper

Abstract

This work focuses on gainful utilization of low reactive fly ash at ambient temperature into alkali-activated binder with the addition of another industrial waste silico-manganese (SiMn) slag. Granulated SiMn slag (GSS) percentage was gradually increased into fly ash-based reference batch. The influence of slag on reactivity of the blends was monitored by isothermal conduction calorimetry. Reactivity was improved with increasing slag content. The structural reorganizations of the resultant binder were detected by peak shifting in Fourier transform infrared spectroscopy study. The positional change of the hump in X-ray diffraction analysis was due to structural rearrangement of the binder. The calcium-rich hydrated product formation was increased with slag inclusion. The fly ash-derived geopolymer gel (N–A–S–H) was coexisted with slag activated gel (C–S–H/C–A–S–H), (where N = Na2O, A = Al2O3, C = CaO, S = SiO2, and H = H2O) in the blend matrix. EDX analysis confirmed the variation in Si/Al, Ca/Si, and Na/Al ratios of the binder with the alteration of reaction products. The development of better compressive strength in slag-rich binder attributed with the formation of Ca-rich gel phases.

Keywords

Fly ash Granulated SiMn slag Alkali-activated cement Reactivity Compressive strength Microstructure 

Notes

Acknowledgements

The authors are grateful to the Director, CSIR-National Metallurgical Laboratory, Jamshedpur, India for his kind permission to publish the paper. We would like to thank all raw materials suppliers. The authors also acknowledge the technical support from CSIR-NML staff.

References

  1. 1.
    Purdon, A.: The action of alkalis on blast furnace slag. J. Soc. Chem. Ind. 59, 191–202 (1940)CrossRefGoogle Scholar
  2. 2.
    Glukhovsky, V.D.: Soil silicate-based products and structures. Gosstroiizdat Publish, Kiev (1957)Google Scholar
  3. 3.
    Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., Fernández-Jiménez, A.: A review on alkaline activation: new analytical perspectives. Mater. Constr. 64, 1–24 (2014)CrossRefGoogle Scholar
  4. 4.
    Davidovits, J.: Geopolymers and geopolymeric materials. J. Therm. Anal. 35, 429–441 (1989)CrossRefGoogle Scholar
  5. 5.
    Yang, K.H., Song, J.K., Song, K.I.: Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 39, 265–272 (2013)CrossRefGoogle Scholar
  6. 6.
    Turner, L.K., Collins, F.G.: Carbon dioxide equivalent (CO2) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125–130 (2013)CrossRefGoogle Scholar
  7. 7.
    Torres-Carrasco, M., Rodríguez-Puertas, C., Alonso, M.d.M., Puertas, F.: Alkali activated slag cements using waste glass as alternative activators. Rheological behavior. Bull. Span. Soc. Ceram. Glass. 54, 45–57 (2015)Google Scholar
  8. 8.
    Pacheco-Torgal, F., Abdollahnejad, Z., Camões, A.F., Jamshidi, M., Ding, Y.: Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue. Constr. Build. Mater. 30, 400–405 (2012)CrossRefGoogle Scholar
  9. 9.
    Fernández-Jiménez, A., Palomo, A., López-Hombrados, C.: Engineering properties of alkali activated fly ash concrete. ACI Mater. J. 103, 106–112 (2006)Google Scholar
  10. 10.
    Bakharev, T., Sanjayan, J.G., Cheng, Y.B.: Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 33, 1607–1611 (2003)CrossRefGoogle Scholar
  11. 11.
    Provis, J.L., Bernal, S.A.: Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44, 299–327 (2014)CrossRefGoogle Scholar
  12. 12.
    Nazari, A., Sanjayan, J.G.: Synthesis of geopolymer from industrial wastes. J. Clean. Prod. 99, 297–304 (2015)CrossRefGoogle Scholar
  13. 13.
    Nath, S.K., Kumar, S.: Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr. Build. Mater. 38, 924–930 (2013)CrossRefGoogle Scholar
  14. 14.
    Djobo, J.N.Y., Tchakoute, H.K., Ranjbar, N., Elimbi, A., Tchadjie, L.N., Njopwouo, D.: Gel composition and strength properties of alkali-activated oyster shell-volcanic ash: effect of synthesis conditions. J. Am. Ceram. Soc. 99, 3159–3166 (2016)CrossRefGoogle Scholar
  15. 15.
    Davidovits, J., Comrie, D.C., Paterson, J.H., Ritcey, D.J.: Geopolymeric concretes for environmental proctection. Concr. Int. Des. Constr. 12, 30–40 (1990)Google Scholar
  16. 16.
    Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J. Hazard. Mater. 157, 587–598 (2008)CrossRefGoogle Scholar
  17. 17.
    Nikolic, V., Komljenovic, M., Marjanovic, N., Bascarevic, A., Petrovic, R.: Lead immobilization by geopolymers based on mechanically activated fly ash. Ceram. Int. 40, 8479–8488 (2014)CrossRefGoogle Scholar
  18. 18.
    Onisei, S., Pontikes, Y., Gerven, T.V., Angelopoulos, G.N., Velea, T., Predica, V., Moldovan, P.: Synthesis of inorganic polymers using fly ash and primary lead slag. J. Hazard. Mater. 205–206, 101–110 (2012)CrossRefGoogle Scholar
  19. 19.
    Navarro, R., Zornoza, E., Garcés, P., Sánchez, I., Alcocel, E.G.: Optimization of the alkali activation conditions of ground granulated SiMn slag. Constr. Build. Mater. 150, 781–791 (2017)CrossRefGoogle Scholar
  20. 20.
    Kumar, S., García-Triñanes, P., Teixeira-Pinto, A., Bao, M.: Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cem. Concr. Compos. 40, 7–13 (2013)CrossRefGoogle Scholar
  21. 21.
    Karakoç, M.B., Türkmen, İ, Maraş, M.M., Kantarci, F., Demirboğa, R., Toprak, M.U.: Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr. Build. Mater. 72, 283–292 (2014)CrossRefGoogle Scholar
  22. 22.
    Alex, T.C., Kalinkin, A.M., Nath, S.K., Gurevich, B.I., Kalinkina, E.V., Tyukavkina, V.V., Kumar, S.: Utilization of zinc slag through geopolymerization: influence of milling atmosphere. Int. J. Miner. Process. 123, 102–107 (2013)CrossRefGoogle Scholar
  23. 23.
    Kumar, S.: The Properties and Performance of Red Mud-Based Geopolymeric Masonry Blocks, pp. 311–328. Eco-Efficient Mason Bricks Blocks, Elsevier (2015)Google Scholar
  24. 24.
    Nath, S.K., Mukherjee, S., Maitra, S., Kumar, S.: Ambient and elevated temperature geopolymerization behavior of class F fly ash. Trans. Indian Ceram. Soc. 73, 126–132 (2014)CrossRefGoogle Scholar
  25. 25.
    Phair, J.W., van Deventer, J.S.J.: Characterization of fly-ash-based geopolymeric binders activated with sodium aluminate. Ind. Eng. Chem. Res. 41, 4242–4251 (2002)CrossRefGoogle Scholar
  26. 26.
    Rattanasak, U., Chindaprasirt, P.: Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22, 1073–1078 (2009)CrossRefGoogle Scholar
  27. 27.
    Bernal, S.A., Provis, J.L., Rose, V., Gutierrez, R.M.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33, 46–54 (2011)CrossRefGoogle Scholar
  28. 28.
    Kumar, S., Mucsi, G., Kristaly, F., Pekker, P.: Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymer. Adv. Powder Technol. 28, 805–813 (2017)CrossRefGoogle Scholar
  29. 29.
    Djobo, J.N.Y., Elimbi, A., Tchakouté, H.K., Kumar, S.: Mechanical activation of volcanic ash for geopolymer synthesis: effect on reaction kinetics, gel characteristics, physical and mechanical properties. RSC Adv. 6, 39106–39117 (2016)CrossRefGoogle Scholar
  30. 30.
    Shi, C., Day, R.L.: A calorimetric study of early hydration of alkali-slag cements. Cem. Concr. Res. 25, 1333–1346 (1995)CrossRefGoogle Scholar
  31. 31.
    Nath, P., Sarker, P.K.: Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 66, 163–171 (2014)CrossRefGoogle Scholar
  32. 32.
    Xu, H., van Deventer, J.S.J.: The geopolymerisation of alumina—silicate minerals. Int. J. Miner. Process. 59, 247–266 (2000)CrossRefGoogle Scholar
  33. 33.
    Fernández-Jiménez, A., Palomo, A.: Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem. Concr. Res. 35, 1984–1992 (2005)CrossRefGoogle Scholar
  34. 34.
    Allahverdi, A., Ahmadnezhad, S.: Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement. Powder Tech. 251, 41–51 (2014)CrossRefGoogle Scholar
  35. 35.
    Nath, S.K., Kumar, S.: Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement. Constr. Build. Mater. 125, 127–134 (2016)CrossRefGoogle Scholar
  36. 36.
    IS: 4031: Method of physical tests for hydraulic cement, Indian Standard (1988)Google Scholar
  37. 37.
    Nath, S.K., Kumar, S.: Reaction kinetics, microstructure and strength behavior of alkali activated silico-manganese (SiMn) slag—Fly ash blends. Constr. Build. Mater. 147, 371–379 (2017)CrossRefGoogle Scholar
  38. 38.
    Frias, M., Sanchez, de Rojas M.I., Santamaria, J., Rodriguez, C.: Recycling of silicomanganese slag as pozzolanic material in Portland cements: basic and engineering properties. Cem. Concr. Res. 36, 487–491 (2006)CrossRefGoogle Scholar
  39. 39.
    Gao, X., Yu, Q.L., Brouwers, H.J.H.: Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Constr. Build. Mater. 80, 105–115 (2015)CrossRefGoogle Scholar
  40. 40.
    Nath, S.K., Maitra, S., Mukherjee, S., Kumar, S.: Microstructural and morphological evolution of fly ash based geopolymers. Constr. Build. Mater. 111, 758–765 (2016)CrossRefGoogle Scholar
  41. 41.
    Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., Chindaprasirt, P.: NaOH activated ground fly ash geopolymer cured at ambient temperature. Fuel 90, 2118–2124 (2011)CrossRefGoogle Scholar
  42. 42.
    Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R.: (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 26, 3789–3797 (2006)CrossRefGoogle Scholar
  43. 43.
    Fine, G., Stolper, E.: Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth Planet Sci. Lett. 76, 263–278 (1986)CrossRefGoogle Scholar
  44. 44.
    Yip, C.K., Lukey, G.C., van Deventer, J.S.J.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35, 1688–1697 (2005)CrossRefGoogle Scholar
  45. 45.
    Cwirzen, A., Provis, J.L., Penttala, V., Habermehl-Cwirzen, K.: The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers. Constr. Build. Mater. 66, 53–62 (2014)CrossRefGoogle Scholar
  46. 46.
    Garcia-Lodeiro, I., Fernández-Jiménez, A., Palomo, A., Macphee, D.E.: Effects of calcium addition on N-A-S-H cementitious gels. J. Am. Ceram. Soc. 93, 1934–1940 (2010)Google Scholar
  47. 47.
    Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., Macphee, D.E.: Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 41, 923–931 (2011)CrossRefGoogle Scholar
  48. 48.
    Mackenzie, K.J.D., Smith, E., Wong, A.: A multinuclear MAS NMR study of calcium-containing aluminosilicate inorganic polymers. J. Mater. Chem. 17, 5090–5096 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIR- National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations