Waste and Biomass Valorization

, Volume 10, Issue 7, pp 1795–1810 | Cite as

Weed as Underutilized Bio-resource and Management Tool: A Comprehensive Review

  • Virbala SharmaEmail author
  • Shreekar Pant


Weeds are widespread unwanted plants which pose a significant threat to ecosystem worldwide due to their high competitive success rate, adaptability and tolerance to adverse environmental conditions. They generally have a negative connotation and attempts to control them have proved costly with minimum results. Weed plants are estimated to cause 30% loss in potential crop production worth about US $90 billion per year in reduced crop yields in India. So, there is a renewed interest in focusing on utilization of weeds in productive ways. Various conventional methods have been used globally to manage them but with modest success and inconsistency. Therefore, holistic approach like utilization of weed plants for various value added products in a productive way is required. Besides being used as bio-resource, they can also be used as management tool. They are cheap, easily available and adaptive to changing climate so can be used as source of essential oils, pharmaceuticals, biochar, biofuel and bioenergy. They can also be employed as metal hyperaccumulator, biosorbent, in soil amendment and for carbon sequestration.


Weeds Pharmaceuticals Biochar Metal hyperaccumulator Biosorbent Soil amendment 


  1. 1.
    Heywood, V.H.: Flowering Plants of the World (No. Ed. 2). BT Batsford Ltd (1993)Google Scholar
  2. 2.
    Holm, L., Pancho, J.V., Herberger, J.P., Plucknett, D.L.: A Geographical Atlas of World Weeds. Wiley, Hoboken (1979)Google Scholar
  3. 3.
    Hobbs, R. J. (ed.).: Invasive Species in a Changing World. Island Press, Washington, D.C. (2000)Google Scholar
  4. 4.
    Pimentel, D., McNair, S., Janecka, J., Wightman, J., Simmonds, C., O’connell, C. et al.: Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84(1), 1–20 (2001)Google Scholar
  5. 5.
    Baskin, Y.: A Plague of Rats and Rubbervines: The Growing Threat of Species Invasions. Island Press, Washington, D.C. (2003)Google Scholar
  6. 6.
    Reddy, C.S.: Catalogue of invasive alien flora of India. Life Sci. 5(2)), 84–89 (2008)Google Scholar
  7. 7.
    Ngugi, D., Karau, P.K., Nguyo, W.: East African Agriculture. A Textbook for Secondary Schools. Macmillan, Basingstoke (1978)Google Scholar
  8. 8.
    Klingman, D.L., Coulson, J.R.: Guidelines for introducing foreign organisms into the United States for biological control of weeds. Weed Sci. 661–667 (1982)Google Scholar
  9. 9.
    Ivens, W., Tank, A.K., Kauppi, P., Alcamo, J.: Atmospheric deposition of sulfur, nitrogen and basic cations onto European forests: observations and model calculations. In: Kämäri, J., Brakke, D.F., Jenkins, A., Norton, S.A., Wright, R.F. (eds.) Regional Acidification Models, pp. 103–111. Berlin, Springer (1989)Google Scholar
  10. 10.
    Cousens, R., Mortimer, M.: Dynamics of Weed Populations. Cambridge University Press, Cambridge (1995)Google Scholar
  11. 11.
    Richardson, D.M., Pysek, P., Rejmanek, M., Barbour, M.G., Panetta, F.D., West, C.J.: Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6(2), 93–107 (2000)Google Scholar
  12. 12.
    Mack, R.N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M., Bazzaz, F.A.: Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710 (2000)Google Scholar
  13. 13.
    Bradley, B.A., Wilcove, D.S., Oppenheimer, M.: Climate change increases risk of plant invasion in the Eastern United States. Biol. Invasions 12(6), 1855–1872 (2010)Google Scholar
  14. 14.
    Dukes, J.S., Mooney, H.A.: Does global change increase the success of biological invaders? Trends Ecol. Evolut. 14(4)), 135–139 (1999)Google Scholar
  15. 15.
    Crossman, N.D., Bryan, B.A., Cooke, D.A.: An invasive plant and climate change threat index for weed risk management: integrating habitat distribution pattern and dispersal process. Ecol. Ind. 11(1)), 183–198 (2011)Google Scholar
  16. 16.
    Callaway, R.M., Aschehoug, E.T.: Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290(5491), 521–523 (2000)Google Scholar
  17. 17.
    Weir, T.L., Bais, H.P., Vivanco, J.M.: Retracted article: intraspecific and interspecific interactions mediated by a phytotoxin,(–)-catechin, secreted by the roots of Centaurea maculosa (Spotted Knapweed). J. Chem. Ecol. 29(11), 2397–2412 (2003)Google Scholar
  18. 18.
    Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M., Vivanco, J.M.: Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301(5638), 1377–1380 (2003)Google Scholar
  19. 19.
    Singh, M., Saxena, M.C., Abu-Irmaileh, B.E., Al-Thahabi, S.A., Haddad, N.I.: Estimation of critical period of weed control. Weed Sci. 44, 273–283 (1996)Google Scholar
  20. 20.
    Weston, L.A., Duke, S.O.: Weed and crop allelopathy. Crit. Rev. Plant Sci. 22(3–4), 367–389 (2003)Google Scholar
  21. 21.
    Khuspe, V.S., Subbaiah, R., Mande, J.V.: Compendium of Indian weed science research (1950–1981). Metropolitan, New Delhi (1982)Google Scholar
  22. 22.
    Lovett, J.V., Levitt, J.U.D.Y., Duffield, A.M., Smith, N.G.: Allelopathic potential of Datura stramonium L.(Thorn-apple). Weed Res. 21(3–4), 165–170 (1981)Google Scholar
  23. 23.
    Levitt, J., Lovett, J.V.: Datura stramonium L.: alkaloids and allelopathy [weed; review]. Australian weeds. (1984)Google Scholar
  24. 24.
    Pacanoski, Z., Velkoska, V., Týr, Š, Vereš, T.: Allelopathic potential of Jimsonweed (Datura stramonium L.) on the early growth of maize (Zea mays L.) and sunflower (Helianthus annuus L.). J. Cent. Euro. Agri. 15(3) (2014)Google Scholar
  25. 25.
    Wolf, R.B., Spencer, G.F., Plattner, R.D.: Benzoxazolinone, 2, 4-dihydroxy-1, 4-benzoxazin-3-one, and its glucoside from Acanthus mollis seeds inhibit velvetleaf germination and growth. J. Nat. Prod. 48(1), 59–63 (1985)Google Scholar
  26. 26.
    Abdul-Wahab, A.S., Rice, E.L.: Plant inhibition by Johnson grass and its possible significance in old-field succession. Bull. Torrey Bot. Club. 486–497 (1967)Google Scholar
  27. 27.
    Weston, L.A., Putnam, A.R.: Inhibition of legume seedling growth by residues and extracts of quackgrass (Agropyron repens). Weed Sci. 366–372 (1986)Google Scholar
  28. 28.
    Stevens, K.L., Putnam, A.R., Tang, C.S.: Polyacetylenes as allelochemicals. In: Putnam, A.R., Tang, C.S. (eds.) The Science of Allelopathy, pp. 219–228. Wiley, Hoboken (1986)Google Scholar
  29. 29.
    Quintana, N., Weir, T.L., Du, J., Broeckling, C.D., Rieder, J.P., Stermitz, F.R. et al.: Phytotoxic polyacetylenes from roots of Russian knapweed (Acroptilon repens (L.) DC.). Phytochemistry 69(14), 2572–2578 (1986)Google Scholar
  30. 30.
    Fischer, N.H., Quijano, L.E.: Allelopathic agents from common weeds. Amaranthus palmeri, Ambrosia artemisiifolia, and related weeds. ACS Symposium series J. Am. Chem. Soc. 268, 133–147 (1985)Google Scholar
  31. 31.
    Kanchan, S.D.: Allelopathic effects of Parthenium hysterophorus L. Plant Soil. 55(1), 67–75 (1980)Google Scholar
  32. 32.
    Maharjan, S., Shrestha, B.B., Jha, P.K.: Allelopathic effects of aqueous extract of leaves of Parthenium hysterophorus L. on seed germination and seedling growth of some cultivated and wild herbaceous species. Sci. World. 5(5), 33–39 (2007)Google Scholar
  33. 33.
    Lovett, J.V., Weerakoon, W.L.: Weed characteristics of the Labiatae, with special reference to allelopathy. Biol Agric Hortic. 1(2), 145–158 (1983)Google Scholar
  34. 34.
    Spencer, G.F., Wolf, R.B., Weisleder, D.: Germination and growth inhibitory sesquiterpenes from Iva axillaris seeds. J. Nat. Prod. 47(4), 730–732 (1984)Google Scholar
  35. 35.
    Lasat, M.: Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res. 2(5), 1–25 (2000)Google Scholar
  36. 36.
    Bhargava, A., Carmona, F.F., Bhargava, M., Srivastava, S.: Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manage. 105, 103–120 (2012)Google Scholar
  37. 37.
    Sanghamitra, K., Prasad Rao, P.V.V., Naidu, G.R.K.: Uptake of Zn (II) by an invasive weed species Parthenium hysterophorus L. AEER 10(3)), 267–290 (2012)Google Scholar
  38. 38.
    Wei, S., Zhou, Q., Mathews, S.: A newly found cadmium accumulator—Taraxacum mongolicum. J. Hazard. Mater. 159(2)), 544–547 (2008)Google Scholar
  39. 39.
    Wei, S., Zhou, Q., Saha, U.K.: Hyperaccumulative characteristics of weed species to heavy metals. Water, Air, Soil Pollut. 192(1–4), 173–181 (2008)Google Scholar
  40. 40.
    Abe, T., Fukami, M., Ogasawara, M.: Cadmium accumulation in the shoots and roots of 93 weed species. J. Soil Sci. Plant Nutr. 54(4), 566–573 (2008)Google Scholar
  41. 41.
    Sun, Y., Zhou, Q., Wang, L., Liu, W.: Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J. Hazard. Mater. 161(2), 808–814 (2009)Google Scholar
  42. 42.
    Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., Kennelley, E.D.: A fern that hyperaccumulates arsenic. Nature. 409(6820), 579 (2001)Google Scholar
  43. 43.
    Hanafiah, M.A.K.M., Zakaria, H., Ngah, W.W.: Preparation, characterization, and adsorption behavior of Cu (II) ions onto alkali-treated weed (Imperata cylindrica) leaf powder. Water, Air, Soil Pollut. 201(1–4), 43–53 (2009)Google Scholar
  44. 44.
    Ajmal, M., Rao, R.A.K., Ahmad, R., Khan, M.A.: Adsorption studies on Parthenium hysterophorous weed: removal and recovery of Cd (II) from wastewater. J. Hazard. Mater. 135(1), 242–248 (2006)Google Scholar
  45. 45.
    Wang, X.S.: Invasive freshwater macrophyte alligator weed: novel adsorbent for removal of malachite green from aqueous solution. Water, Air, Soil Pollut. 206(1–4), 215–223 (2010)Google Scholar
  46. 46.
    Ahmad, M., Moon, D.H., Vithanage, M., Koutsospyros, A., Lee, S.S., Yang, J.E. et al.: Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. J. Chem. Technol. Biotechnol. 89(1), 150–157 (2014)Google Scholar
  47. 47.
    Yakkala, K., Yu, M.R., Roh, H., Yang, J.K., Chang, Y.Y.: Buffalo weed (Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorption in single and mixed system. Desalin. Water Treat. 51(40–42), 7732–7745 (2013)Google Scholar
  48. 48.
    Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D. et al.: Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 99, 19–33 (2014)Google Scholar
  49. 49.
    Li, F., Shen, K., Long, X., Wen, J., Xie, X., Zeng, X. et al.: Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PloS ONE. 11(2), e0148132 (2016)Google Scholar
  50. 50.
    Kumar, S., Masto, R.E., Ram, L.C., Sarkar, P., George, J., Selvi, V.A.: Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol. Eng. 55, 67–72 (2013)Google Scholar
  51. 51.
    Masto, R.E., Kumar, S., Rout, T.K., Sarkar, P., George, J., Ram, L.C.: Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena 111, 64–71 (2013)Google Scholar
  52. 52.
    Mandal, S., Verma, B.C., Ramkrushna, G.I., Singh, R.K., Rajkhowa, D.J.: Characterization of biochar obtained from weeds and its effect on soil properties of North Eastern Region. J. Environ. Biol. 36, 499–505 (2015)Google Scholar
  53. 53.
    Pasha, C., Nagavalli, M., Venkateswar Rao, L.: Lantana camara for fuel ethanol production using thermotolerant yeast. Lett. Appl. Microbiol. 44(6), 666–672 (2007)Google Scholar
  54. 54.
    Kuhad, R.C., Gupta, R., Khasa, Y.P., Singh, A.: Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour. Technol. 101(21), 8348–8354 (2010)Google Scholar
  55. 55.
    Gupta, R., Sharma, K.K., Kuhad, R.C.: Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour. Technol. 100(3), 1214–1220 (2009)Google Scholar
  56. 56.
    Lehmann, J.: A handful of carbon. Nature. 447(7141), 143–144 (2007)Google Scholar
  57. 57.
    Zimmerman, A.R.: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol. 44(4), 1295–1301 (2010)Google Scholar
  58. 58.
    Tang, J., Zhu, W., Kookana, R., Katayama, A.: Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 116(6), 653–659 (2013)Google Scholar
  59. 59.
    Padalia, R.C., Verma, R.S., Sundaresan, V.: Volatile constituents of three invasive weeds of Himalayan region. Rec. Nat. Prod. 4(2), 109–114 (2010)Google Scholar
  60. 60.
    Lawrence, B.M.: Progress in essential oils-Cyperus rotundus oil and extract. Perfum. Flavorist 36(9), 54 (2011)Google Scholar
  61. 61.
    Kohli, R.K., Batish, D.R., Singh, H.P., Dogra, K.S.: Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biol. Invasions. 8(7), 1501–1510 (2006)Google Scholar
  62. 62.
    Misra, L., Saikia, A.K.: Chemotypic variation in Indian Lantana camara essential oil. J. Essent. Oil Res. 23(3), 1–5 (2011)Google Scholar
  63. 63.
    Verma, R.S., Padalia, R.C., Verma, S.K., Chauhan, A., Darokar, M.P.: The essential oil of ‘bhang’ (Cannabis sativa L.) for non-narcotic applications. Curr. Sci. 107(4), 645–650 (2011)Google Scholar
  64. 64.
    Deba, F., Xuan, T.D., Yasuda, M., Tawata, S.: Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Control. 19(4), 346–352 (2008)Google Scholar
  65. 65.
    Gila, A., Ghersa, C.M., Leicach, S.: Essential oil yield and composition of Tagetes minuta accessions from Argentina. Biochem. Syst. Ecol. 28(3), 261–274 (2000)Google Scholar
  66. 66.
    Juteau, F., Masotti, V., Bessiere, J.M., Dherbomez, M., Viano, J.: Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 73(6), 532–535 (2002)Google Scholar
  67. 67.
    Sarker, A.K., Chowdhury, J.U., Bhuiyan, H.R.: Chemical composition and antimicrobial activity of essential oil Collected from Adhatoda vasica leaves. Bangladesh J. Sci. Ind. Res. 46(2), 191–194 (2011)Google Scholar
  68. 68.
    Farnsworth, N.R., Soejarto, D.D.: Global importance of medicinal plants. In: Akerele, O., Heywood, V., Synge, H. (eds.) The Conservation of Medicinal Plants, pp. 25–51. Cambridge University Press, Cambridge (1991)Google Scholar
  69. 69.
    Naidu, V.S.G.R., Yaduraju, N.T., Gogoi, A.K.: Weeds that heal. Natl. Res. Cent. Weed Sci. 120, 1–120 (2005)Google Scholar
  70. 70.
    Jain, S.K.: Human aspects of plant diversity. Eco. Bot. 54(4), 459–470 (2000)Google Scholar
  71. 71.
    Saikia, L.R., Hussain, I.: Obnoxious weeds of Sivasagar and their utility as folklore medicine among the Ahom and Khamti Communities. Ecol. Env. Cons. 11(2), 231 (2005)Google Scholar
  72. 72.
    O’Neill, M.J., Lewis, J.A.: The renaissance of plant research in the pharmaceutical industry. ACS symposium series, pp. 45–55, ACS Publication, USA (1993)Google Scholar
  73. 73.
    Farnsworth, N.R., Soejarto, D.D.: Potential consequence of plant extinction in the United States on the current and future availability of prescription drugs. Eco. Bot. 39(3), 231–240 (1985)Google Scholar
  74. 74.
    Cragg, G.M., Newman, D.J., Snader, K.M.: Natural products in drug discovery and development. J. Nat. Prod. 60(1), 52–60 (1997)Google Scholar
  75. 75.
    Farnsworth, N.R., Akerele, O., Bingel, A.S., Soejarto, D.D., Guo, Z.: Medicinal plants in therapy. Bull. World Health Organ. 63(6), 965 (1985)Google Scholar
  76. 76.
    Feeny, P.: Plant apparency and chemical defense. Wallace, J.W., Mansell, R.L. (eds.) Biochemical Interaction Between Plants and Insects, (pp. 1–40). Springer, New York (1976)Google Scholar
  77. 77.
    Coley, P.D., Bryant, J.P., Chapin, F.S.: Resource availability and plant antiherbivore defense. Science. 230(4728), 895–899 (1985)Google Scholar
  78. 78.
    Vanachayangkul, P., Byer, K., Khan, S., Butterweck, V.: An aqueous extract of Ammi visnaga fruits and its constituents khellin and visnagin prevent cell damage caused by oxalate in renal epithelial cells. Phytomedicine. 17(8), 653–658 (2010)Google Scholar
  79. 79.
    Barbieri, R.L., Gochberg, J., Ryan, K.J.: Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro. J. Clin. Invest. 77(6), 1727 (1986)Google Scholar
  80. 80.
    Campbell, F.L., Sullivan, W.N., Smith, C.R.: The relative toxicity of nicotine, anabasine, methyl anabasine, and lupinine for culicine mosquito larvae. J. Econ. Entomol. 26(2), 500–509 (1933)Google Scholar
  81. 81.
    Klayman, D.L.: Qinghaosu (artemisinin): an antimalarial drug from China. Science. 228(4703), 1049–1055 (1985)Google Scholar
  82. 82.
    Brenner, R.L.: Further observations on use of atropine in the treatment of myopia. Ann. Ophthalmol. 17(2), 137–140 (1985)Google Scholar
  83. 83.
    Scheinman, M.M., Thorburn, D.A.V.I.D., Abbott, J.A.: Use of atropine in patients with acute myocardial infarction and sinus bradycardia. Circulation. 52(4), 627–633 (1975)Google Scholar
  84. 84.
    Gupte, S.: Use of berberine in treatment of giardiasis. Am. J. Dis. Child. 129(7), 866–866 (1975)Google Scholar
  85. 85.
    Kulkarni, S.K., Dhir, A.: Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother. Res. 24(3), 317–324 (2010)Google Scholar
  86. 86.
    Delaquis, P.J., Sholberg, P.L.: Antimicrobial activity of gaseous allyl isothiocyanate. J. Food Prot. 60(8), 943–947 (1997)Google Scholar
  87. 87.
    Cragg, G.M., Newman, D.J.: Plants as a source of anti-cancer agents. J. Ethnopharmacol. 100(1)), 72–79 (2005)Google Scholar
  88. 88.
    Shukla, A., Rasik, A.M., Jain, G.K., Shankar, R., Kulshrestha, D.K., Dhawan, B.N.: In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J. Ethnopharmacol. 65(1)), 1–11 (1999)Google Scholar
  89. 89.
    Lee, J., Jung, E., Kim, Y., Park, J., Hong, S., Kim, J., et al.: Asiaticoside induces human collagen I synthesis through TGFbeta receptor I kinase (TbetaRI kinase)-independent Smad signaling. Planta medica. 72(4), 324–328 (2006)Google Scholar
  90. 90.
    Mook-Jung, I., Shin, J.E., Yun, S.H., Huh, K., Koh, J.Y., Park, H.K., et al.: Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J. Neurosci. Res. 58(3), 417–425 (1999)Google Scholar
  91. 91.
    Wallace, S.L.: U.S. Patent No. 3,006,812. U.S. Patent and Trademark Office, Washington, DC (1961)Google Scholar
  92. 92.
    Mourelle, M., Fraginals, R., Rodriguez, L., Favari, L., Pérez-Alvarez, V.: Protective effect of colchiceine against acute liver damage. Life Sci. 45(10), 891–900 (1989)Google Scholar
  93. 93.
    Price, N.M., Schmitt, L.G., McGuire, J., Shaw, J.E., Trobough, G.: Transdermal scopolamine in the prevention of motion sickness at sea. Clin. Pharmacol. Ther. 29(3), 414–419 (1981)Google Scholar
  94. 94.
    Perez, L.M., Farriols, C., Puente, V., Planas, J., Ruiz, I.: The use of subcutaneous scopolamine as a palliative treatment in Parkinson’s disease. Palliat. Med. 25(1)), 92–93 (2011)Google Scholar
  95. 95.
    Haux, J.: Digitoxin is a potential anticancer agent for several types of cancer. Med. Hypotheses. 53(6), 543–548 (1999)Google Scholar
  96. 96.
    Van Rossum, T.G.J., De Man, R.A.: Glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment. Pharmacol. Ther. 12(3), 199–205 (1998)Google Scholar
  97. 97.
    Ito, M., Nakashima, H., Baba, M., Pauwels, R., De Clercq, E., Shigeta, S., Yamamoto, N.: Inhibitory effect of glycyrrhizin on the in vitro infectivity and cytopathic activity of the human immunodeficiency virus [HIV (HTLV-III/LAV)]. Antiviral Res. 7(3), 127–137 (1987)Google Scholar
  98. 98.
    Keeler, M.H., Kane, F.J., Jr.: The use of hyoscyamine as a hallucinogen and intoxicant. Am. J Psychiatry 124(6), 852–854 (1967)Google Scholar
  99. 99.
    Dwoskin, L.P., Crooks, P.A.: A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse. Biochem. Pharmacol. 63(2), 89–98 (2002)Google Scholar
  100. 100.
    De Takats, G.: The use of papaverine in acute arterial occlusions. JAMA 106(12), 1003–1005 (1936)Google Scholar
  101. 101.
    Russek, H.I., Zohman, B.L.: Papaverine in cerebral angiospasm (vascular encephalopathy). JAMA 136(14), 930–932 (1948)Google Scholar
  102. 102.
    Saller, R., Meier, R., Brignoli, R.: The use of silymarin in the treatment of liver diseases. Drugs. 61(14), 2035–2063 (2001)Google Scholar
  103. 103.
    Soto, C.P., Perez, B.L., Favari, L.P., Reyes, J.L.: Prevention of alloxan-induced diabetes mellitus in the rat by silymarin. Comp. Biochem. Physiol. C 119(2), 125–129 (1998)Google Scholar
  104. 104.
    Fischhof, P.K., Möslinger-Gehmayr, R., Herrmann, W.M., Friedmann, A., Ruβmann, D.L.: Therapeutic efficacy of vincamine in dementia. Neuropsychobiology. 34(1), 29–35 (1996)Google Scholar
  105. 105.
    Esanu, A.: U.S. Patent No. 4,137,316. U.S. Patent and Trademark Office, Washington, DC (1979)Google Scholar
  106. 106.
    Gray, M.J., Plentl, A.A.: Sparteine: a review of its uses in obstetrics. Obstet. Gynecol. 11(2), 204–213 (1958)Google Scholar
  107. 107.
    Wei, S., Zhou, Q., Wang, X., Zhang, K., Guo, G., Ma, L.Q.: A newly-discovered Cd-hyperaccumulator Solatium nigrum L. Chin. Sci. Bull. 50(1)), 33–38 (2005)Google Scholar
  108. 108.
    Mizuno, T., Hirano, K., Hosono, A., Kato, S., Obata, H.: Continual pH lowering and manganese dioxide solubilization in the rhizosphere of the Mn-hyperaccumulator plant Chengiopanax sciadophylloides. J. Soil Sci. Plant Nutr. 52(6), 726–733 (2006)Google Scholar
  109. 109.
    Zhang, X.H., Luo, Y.P., Huang, H.T., Liu, J., Zhu, Y.N., Zeng, Q.F.: Leersia hexandra Swartz: a newly discovered hygrophyte with chromium hyper-accumulator properties. Acta Ecol. Sin. 3, 041 (2006)Google Scholar
  110. 110.
    Sun, Y., Zhou, Q., Diao, C.: Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour. Technol. 99(5), 1103–1110 (2008)Google Scholar
  111. 111.
    Zhao, F.J., Dunham, S.J., McGrath, S.P.: Arsenic hyperaccumulation by different fern species. New Phytol. 156(1), 27–31 (2002)Google Scholar
  112. 112.
    Tanhan, P., Kruatrachue, M., Pokethitiyook, P., Chaiyarat, R.: Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere. 68(2), 323–329 (2007)Google Scholar
  113. 113.
    Lytle, C.M., Lytle, F.W., Yang, N., Qian, J.H., Hansen, D., Zayed, A., Terry, N.: Reduction of Cr (VI) to Cr (III) by wetland plants: potential for in situ heavy metal detoxification. Environ. Sci. Technol. 32(20), 3087–3093 (1998)Google Scholar
  114. 114.
    Banasova, V., Horak, O., Nadubinska, M., Ciamporova, M., Lichtscheidl, I.: Heavy metal content in Thlaspi caerulescens J. et C. Presl growing on metalliferous and non-metalliferous soils in Central Slovakia. Int. J. Env. Pollu. 33(2–3), 133–145 (2008)Google Scholar
  115. 115.
    Calheiros, C.S., Rangel, A.O., Castro, P.M.: The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch. Environ. Contam. 55(3), 404–414 (2008)Google Scholar
  116. 116.
    Jin, X.F., Liu, D., Islam, E., Mahmood, Q., Yang, X.E., He, Z.L., Stoffella, P.J.: Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii H. J. Plant Nutr. 32(10), 1642–1656 (2009)Google Scholar
  117. 117.
    Hu, P.J., Qiu, R.L., Senthilkumar, P., Jiang, D., Chen, Z.W., Tang, Y.T., Liu, F.J.: Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ. Exp. Bot. 66(2), 317–325 (2009)Google Scholar
  118. 118.
    Ghosh, M., Singh, S.: A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J. Energy Environ. 6(4), 18 (2005)Google Scholar
  119. 119.
    Keller, C., Ludwig, C., Davoli, F., Wochele, J.: Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. ‎Environ. Sci. Technol. 39(9), 3359–3367 (2005)Google Scholar
  120. 120.
    Sas-Nowosielska, A., Kucharski, R., Małkowski, E., Pogrzeba, M., Kuperberg, J.M., Kryński, K.: Phytoextraction crop disposal—an unsolved problem. Environ. Pollut. 128(3), 373–379 (2004)Google Scholar
  121. 121.
    Bhainsa, K.C., D’Souza, S.F.: Uranium (VI) biosorption by dried roots of Eichhornia crassipes (water hyacinth). J. Environ. Sci. Health A 36(9), 1621–1631 (2001)Google Scholar
  122. 122.
    Guo, S., Li, W., Zhang, L., Peng, J., Xia, H., Zhang, S.: Kinetics and equilibrium adsorption study of lead (II) onto the low cost adsorbent—Eupatorium adenophorum spreng. Process. Saf. Environ. Prot. 87(5), 343–351 (2009)Google Scholar
  123. 123.
    Wang, X.S., Tang, Y.P., Tao, S.R.: Removal of Cr (VI) from aqueous solutions by the nonliving biomass of alligator weed: kinetics and equilibrium. Adsorption 14(6), 823–830 (2008)Google Scholar
  124. 124.
    Wang, X.S., Tang, Y.P., Tao, S.R.: Kinetics, equilibrium and thermodynamic study on removal of Cr (VI) from aqueous solutions using low-cost adsorbent alligator weed. Chem. Eng. 148(2), 217–225 (2009)Google Scholar
  125. 125.
    Shekinah, P., Kadirvelu, K., Kanmani, P., Senthilkumar, P., Subburam, V.: Adsorption of lead (II) from aqueous solution by activated carbon prepared from Eichhornia. J. Chem. Technol. Biotechnol. 77(4), 458–464 (2002)Google Scholar
  126. 126.
    Mahamadi, C., Nharingo, T.: Utilization of water hyacinth weed (Eichhornia crassipes) for the removal of Pb (II), Cd (II) and Zn (II) from aquatic environments: an adsorption isotherm study. Environ. Technol. 31(11), 1221–1228 (2010)Google Scholar
  127. 127.
    Jayaram, K., Prasad, M.N.V.: Removal of Pb (II) from aqueous solution by seed powder of Prosopis juliflora DC. J. Hazard Mater. 169(1), 991–997 (2009)Google Scholar
  128. 128.
    Dubey, A., Mishra, A., Singhal, S.: Application of dried plant biomass as novel low-cost adsorbent for removal of cadmium from aqueous solution. Int. J. Env. Sci. Technol. 11(4), 1043–1050 (2014)Google Scholar
  129. 129.
    Okoronkwo, A.E., Olasehinde, E.F.: Investigation of lead binding by Tithonia diversifolia. J. Appl. Sci. 7(12), 1589–1595 (2007)Google Scholar
  130. 130.
    Wang, X.S., Zhang, B.: Sorption of Al (III) from aqueous solution by fresh macrophyte alligator weed: equilibrium and kinetics. Desalination 250(2), 485–489 (2010)Google Scholar
  131. 131.
    Vithanage, M., Rajapaksha, A.U., Tang, X., Thiele-Bruhn, S., Kim, K.H., Lee, S.E., Ok, Y.S.: Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. J. Environ. Manag. 141, 95–103 (2014)Google Scholar
  132. 132.
    Singh, R.S., Singh, V.K., Mishra, A.K., Tiwari, P.N., Singh, U.N., Sharma, Y.C.: Parthenium hysterophorus: a novel adsorbent to remove Cr (VI) from aqueous solutions. J. Appl. Sci. Environ. Sanit. 3, 177–189 (2008)Google Scholar
  133. 133.
    Shrivastava, V.S.: The biosorption of Safranine onto Parthenium hysterophorus L: equilibrium and kinetics investigation. Desalin. Water Treat. 22(1–3), 146–155 (2010)Google Scholar
  134. 134.
    Ibrahim, H.S., Ammar, N.S., Soylak, M., Ibrahim, M.: Removal of Cd (II) and Pb (II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochim. Acta A 96, 413–420 (2012)Google Scholar
  135. 135.
    Somerville, C., Youngs, H., Taylor, C., Davis, S.C., Long, S.P.: Feedstocks for lignocellulosic biofuels. Science. 329, 790–792 (2010)Google Scholar
  136. 136.
    Lemus, R., Lal, R.: Bioenergy crops and carbon sequestration. Crit. Rev. Plant Sci. 24, 1–21 (2005)Google Scholar
  137. 137.
    Kumar, A., Kotiya, A.: Some potential plants for bio-energy. Biomass for energy industry and climate protection. WIP, Munich, pp. 180–183 (2004)Google Scholar
  138. 138.
    Worldwatch Institute: ‘Biofuels for Transportation: Global Potential and Implications for Sustainable Agriculture and Energy in the 21st Century (Extended Summary). Prepared for the German Federal Ministry of Food, Agriculture and Consumer Protection.’ Washington DC. (2006)Google Scholar
  139. 139.
    Gilreath, J.P.: Development of a production system for weeds as biomass crops. Biomass 9(2), 135–144 (1986)Google Scholar
  140. 140.
    Gunaseelan, V.N.: Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1–2), 83–114 (1997)Google Scholar
  141. 141.
    Mack, R.N.: Evaluating the credits and debits of a proposed biofuel species: giant reed (Arundo donax). Weed Sci. 56(6), 883–888 (2008)Google Scholar
  142. 142.
    Jagadeesh, K.S., Geeta, G.S., Reddy, T.K.R.: Biogas production by anaerobic digestion of Eupatorium odoratum L. Biological Wastes. 33(1), 67–70 (1990)Google Scholar
  143. 143.
    Zhang, W.: The utilization of worst poisonous weed Eupatorium adenophorum. Yunnan Forestry Sci. Technol. 1, 78–81 (1996)Google Scholar
  144. 144.
    Curt, M.D., Aguado, P., Sanz, M., Sánchez, G., Fernández, J.: Clone precocity and the use of Helianthus tuberosus L. stems for bioethanol. Ind. Crops Prod. 24(3), 314–320 (2006)Google Scholar
  145. 145.
    O’Sullivan, C., Rounsefell, B., Grinham, A., Clarke, W., Udy, J.: Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba Caroliniana) and salvinia (Salvinia molesta). Ecol. Eng. 36(10), 1459–1468 (2010)Google Scholar
  146. 146.
    Kobbing, J.F., Thevs, N., Zerbe, S.: The utilisation of reed (Phragmites australis): a review. Mires Peat. 13(1), 1–14 (2013)Google Scholar
  147. 147.
    Patuzzi, F., Mimmo, T., Cesco, S., Gasparella, A., Baratieri, M.: Common reeds (Phragmites australis) as sustainable energy source: experimental and modelling analysis of torrefaction and pyrolysis processes. Gcb Bioenergy 5(4), 367–374 (2013)Google Scholar
  148. 148.
    Tutt, M., Olt, J.: Suitability of various plant species for bioethanol production. Agro. Res. 9(1), 261–267 (2011)Google Scholar
  149. 149.
    Kumar, A., Singh, L.K., Ghosh, S.: Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresour. Technol. 100(13), 3293–3297 (2009)Google Scholar
  150. 150.
    Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Engi. Che. Res. 48(8), 3713–3729 (2009)Google Scholar
  151. 151.
    Chandel, A.K., Narasu, M.L., Chandrasekhar, G., Manikyam, A., Rao, L.V.: Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS 3. Bioresour. Technol. 100(8), 2404–2410 (2009)Google Scholar
  152. 152.
    Kumari, R.: Development of hybrid yeast strains for the production of bioethanol from lignocellulosic biomass (Doctoral dissertation) (2012)Google Scholar
  153. 153.
    Wiselogel, A.: Biomass feedstock resources and composition. Fuel Energy Abstr. 2(38), 104 (1997)Google Scholar
  154. 154.
    Suryawati, L., Wilkins, M.R., Bellmer, D.D., Huhnke, R.L., Maness, N.O., Banat, I.M.: Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem. 44(5), 540–545 (2009)Google Scholar
  155. 155.
    Sreenath, H.K., Koegel, R.G., Moldes, A.B., Jeffries, T.W., Straub, R.J.: Ethanol production from alfalfa fiber fractions by saccharification and fermentation. Process Biochem. 36(12), 1199–1204 (2001)Google Scholar
  156. 156.
    Lehmann, J., Gaunt, J., Rondon, M.: Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strateg. Glob Change 11(2), 395–419 (2006)Google Scholar
  157. 157.
    Renard, D., Iriarte, J., Birk, J.J., Rostain, S., Glaser, B., McKey, D.: Ecological engineers ahead of their time: The functioning of pre-Columbian raised-field agriculture and its potential contributions to sustainability today. Ecol. Eng. 45, 30–44 (2012)Google Scholar
  158. 158.
    Singh, H.P., Batish, D.R., Pandher, J.K., Kohli, R.K.: Phytotoxic effects of Parthenium hysterophorus residues on three Brassica species. Weed Biol. Manag. 5(3), 105–109 (2005)Google Scholar
  159. 159.
    Jeffery, S., Verheijen, F.G., Van Der Velde, M., Bastos, A.C.: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 144(1), 175–187 (2011)Google Scholar
  160. 160.
    Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R.: A review of biochar and its use and function in soil. Adv. Agron. 105, 47–82 (2010)Google Scholar
  161. 161.
    Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’neill, B., et al.: Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70(5), 1719–1730 (2006)Google Scholar
  162. 162.
    Glaser, B., Lehmann, J., Zech, W.: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol. Fert. Soils. 35(4), 219–230 (2002)Google Scholar
  163. 163.
    Verheijen, F., Jeffery, S., Bastos, A.C., Van der Velde, M., Diafas, I.: Biochar application to soils. Crit. Sci. Rev. Effects Soil Prop. Process. Funct. 24099, 162 (2010)Google Scholar
  164. 164.
    Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D.: Biochar effects on soil biota—a review. Soil Biol. Biochem. 43(9), 1812–1836 (2011)Google Scholar
  165. 165.
    Kwapinski, W., Byrne, C.M., Kryachko, E., Wolfram, P., Adley, C., Leahy, J.J., et al.: Biochar from biomass and waste. Waste Biomass Valoriz. 1(2), 177–189 (2010)Google Scholar
  166. 166.
    Shafiq, M.: Management of the Parthenium hysterophorus through biochar formation and its application to rice-wheat cultivation in Pakistan. Agric. Ecosyst. Environ. 235, 265–276 (2016)Google Scholar
  167. 167.
    Beesley, L., Marmiroli, M.: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 159(2), 474–480 (2011)Google Scholar
  168. 168.
    Jin-hua, Y.U.A.N., Ren-kou, X.U.: Progress of the research on the properties of biochars and their influence on soil environmental functions. Ecol. Environ. Sci. 20(4), 779–785 (2011)Google Scholar
  169. 169.
    Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3), 848–889 (2006)Google Scholar
  170. 170.
    Enders, A., Hanley, K., Whitman, T., Joseph, S., Lehmann, J.: Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012)Google Scholar
  171. 171.
    Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., Ro, K.S.: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 107, 419–428 (2012)Google Scholar
  172. 172.
    Liu, Z., Zhang, F.S., Wu, J.: Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel. 89(2), 510–514 (2010)Google Scholar
  173. 173.
    Uchimiya, M., Lima, I.M., Klasson, K.T., Wartelle, L.H.: Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80(8), 935–940 (2010)Google Scholar
  174. 174.
    Rajapaksha, A.U., Vithanage, M., Lim, J.E., Ahmed, M.B.M., Zhang, M., Lee, S.S., Ok, Y.S.: Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil. Chemosphere. 111, 500–504 (2014)Google Scholar
  175. 175.
    Roh, H., Yu, M.R., Yakkala, K., Koduru, J.R., Yang, J.K., Chang, Y.Y.: Removal studies of Cd (II) and explosive compounds using buffalo weed biochar-alginate beads. Ind. Eng. Chem. Res. 26, 226–233 (2015)Google Scholar
  176. 176.
    Gaunt, J.L., Lehmann, J.: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol. 42(11), 4152–4158 (2008)Google Scholar
  177. 177.
    Cheng, C.H., Lehmann, J., Thies, J.E., Burton, S.D.: Stability of black carbon in soils across a climatic gradient. J. Geophys. Res. 113(G2) (2008)Google Scholar
  178. 178.
    Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., et al.: Australian climate-carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1(12), 832–835 (2008)Google Scholar
  179. 179.
    Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J.E., Skjemstad, J.O., et al.: Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta. 72(24), 6069–6078 (2008)Google Scholar
  180. 180.
    Schutz, K., Carle, R., Schieber, A.: Taraxacum—a review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 107(3), 313–323 (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Earth and Environmental SciencesCentral University of Himachal PradeshDharamshalaIndia
  2. 2.Conservation Ecology Laboratory, Department of Botany, School of Biosciences and BiotechnologyBGSB UniversityRajouriIndia

Personalised recommendations