Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 7, pp 1979–1987 | Cite as

Characterization of Energy-Rich Hydrochars from Microwave-Assisted Hydrothermal Carbonization of Coconut Shell

  • Sunday E. ElaigwuEmail author
  • Gillian M. Greenway
Original Paper

Abstract

In this study, microwave-assisted hydrothermal carbonization of waste coconut shell (feedstock) is reported. It is a thermo-conversion technique in which the feedstock was transformed into energy-rich carbonaceous material under mild conditions. The process was conducted in a microwave oven by heating the waste coconut shell in deionized water inside a pressurized vessel. The effects of different process conditions on the product yields, and the energy properties of the hydrochars were studied by varying the reaction temperature from 150 to 200 °C and residence time from 5 to 30 min. The results showed that there was transformation of the feedstock in the process due to the decarboxylation, dehydration, and demethanation reactions. This led to changes in the chemical and structural compositions, as well as increase in the energy properties of the prepared hydrochars. The higher heating value increased from 15.06 MJ/kg in the feedstock to 19.76 MJ/kg in the hydrochar. The energy properties of the hydrochars prepared in this study showed that microwave-assisted hydrothermal carbonization process could be a technique for converting waste coconut shell into high value-added product.

Keywords

Microwave-assisted Hydrothermal carbonization Hydrochar Coconut shell Product yields Energy properties 

Notes

Acknowledgements

The authors wish to thank the Petroleum Technology Development Fund (PTDF), Nigeria for PhD studentship of Dr. Sunday E. Elaigwu. We also wish to thank Bob Knight of the Department of Chemistry, University of Hull for his assistance with CEM microwave oven.

References

  1. 1.
    Asomaning, J., Mussone, P., Bressler, D.C.: Two-stage thermal conversion of inedible lipid feedstocks to renewable chemicals and fuels. Bioresour. Technol. 158, 55–62 (2014)CrossRefGoogle Scholar
  2. 2.
    Maher, K.D., Bressler, D.C.: Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol. 98, 2351–2368 (2007)CrossRefGoogle Scholar
  3. 3.
    Asomaning, J., Mussone, P., Bressler, D.C.: Pyrolysis of polyunsaturated fatty acids. Fuel Process Technol. 120, 89–95 (2014)CrossRefGoogle Scholar
  4. 4.
    Elaigwu, S.E., Greenway, G.M.: Microwave-assisted hydrothermal carbonization of rapeseed husk: a strategy for improving its solid fuel properties. Fuel Process Technol. 149, 305–312 (2016)CrossRefGoogle Scholar
  5. 5.
    Liu, F., Gao, M.: Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass. J. Mater. Sci. 50, 1624–1631 (2015)CrossRefGoogle Scholar
  6. 6.
    Elaigwu, S.E., Greenway, G.M.: Chemical, structural and energy properties of hydrochars from microwave-assisted hydrothermal carbonization of glucose. Int. J. Ind. Chem. 7, 449–456 (2016)CrossRefGoogle Scholar
  7. 7.
    Elaigwu, S.E., Greenway, G.M.: Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: comparison of the chemical and structural properties of the hydrochars. J. Anal. Appl. Pyrolysis 118, 1–8 (2016)CrossRefGoogle Scholar
  8. 8.
    Guiotoku, M., Rambo, C.R., Hansel, F.A., Magalhaes, W.L.E., Hotza, D.: Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater. Lett. 63, 2707–2709 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, M.F., Shen, Y., Sun, J.K., Bian, J., Chen, C.Z., Sun, R.C.: Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating. ACS Sustain. Chem. Eng. 3, 2022–2029 (2015)CrossRefGoogle Scholar
  10. 10.
    Elaigwu, S.E.: Pollution reduction with processed waste materials. PhD thesis, Department of Chemistry, University of Hull, United Kingdom (2013)Google Scholar
  11. 11.
    Li, W., Yang, K., Peng, J., Zhang, L., Guo, S., Xia, H.: Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind. Crop Prod. 28, 190–198 (2008)CrossRefGoogle Scholar
  12. 12.
    Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H., Duan, X.: Preparation of high surface area activated carbon from coconut shell using microwave heating. Bioresour. Technol. 101, 6163–6169 (2010)CrossRefGoogle Scholar
  13. 13.
    Hu, Z., Srinivasan, M.P.: Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater. 27, 11–18 (1999)CrossRefGoogle Scholar
  14. 14.
    Elaigwu, S.E., Rocher, V., Kyriakou, G., Greenway, G.M.: Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydro-thermal carbonization of Prosopis africana shell. J. Ind. Eng. Chem. 20, 3467–3473 (2014)CrossRefGoogle Scholar
  15. 15.
    Sevilla, M., Macia-Agullo, J.A., Fuertes, A.B.: Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenerg. 35, 3152–3159 (2011)CrossRefGoogle Scholar
  16. 16.
    Falco, C., Baccile, N., Titirici, M.M.: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 13, 3273–3281 (2011)CrossRefGoogle Scholar
  17. 17.
    Kang, S., Li, X., Fan, J., Chang, J.: Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind. Eng. Chem. Res. 51, 9023–9031 (2012)CrossRefGoogle Scholar
  18. 18.
    Berge, N.D., Ro, K.S., Mao, J., Flora, J.R.V., Chappell, M.A., Bae, S.: Hydrothermal carbonization of municipal waste streams. Environ. Sci. Technol. 45, 5696–5703 (2011)CrossRefGoogle Scholar
  19. 19.
    Gao, P., Zhou, Y., Meng, F., Zhang, Y., Liu, Z., Zhang, W., Xue, G.: Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy 97, 238–245 (2016)CrossRefGoogle Scholar
  20. 20.
    Funke, A., Ziegler, F.: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod. Biorefin. 4, 160–177 (2010)CrossRefGoogle Scholar
  21. 21.
    Reza, M.T., Lynam, J.G., Uddin, M.H., Coronella, C.J.: Hydrothermal carbonization: fate of inorganics. Biomass Bioenerg. 49, 86–94 (2013)CrossRefGoogle Scholar
  22. 22.
    Hoekman, S.K., Broch, A., Robbins, C., Zielinska, B., Felix, L.: Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers. Biorefin. 3, 113–126 (2012)CrossRefGoogle Scholar
  23. 23.
    Reza, M.T., Uddin, M.H., Lynam, J.G., Hoekman, S.K., Coronella, C.J.: Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass Convers. Biorefin. 4, 311–321 (2014)CrossRefGoogle Scholar
  24. 24.
    Reza, M.T., Nover, J., Wirth, B., Coronella, C.J.: Hydrothermal carbonization of glucose in saline solution: sequestration of nutrients on carbonaceous materials. AIMS Energy 4, 173–189 (2016)CrossRefGoogle Scholar
  25. 25.
    Antal, M.J., Grønli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003)CrossRefGoogle Scholar
  26. 26.
    Liu, H.-M., Xie, X.-A., Li, M.-F., Sun, R.-C.: Hydrothermal liquefaction of cypress: effects of reaction conditions on 5-lump distribution and composition. J. Anal. Appl. Pyrolysis 94, 177–183 (2012)CrossRefGoogle Scholar
  27. 27.
    Saqib, N.U., Oh, M., Jo, W., Park, S.K., Lee, J.Y.: Conversion of dry leaves into hydrochar through hydrothermal carbonization (HTC). J. Mater. Cycle Waste Manag. 19, 111–117 (2017)CrossRefGoogle Scholar
  28. 28.
    Parshetti, G.K., Hoekman, S.K., Balasubramanian, R.: Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour. Technol. 135, 683–689 (2013)CrossRefGoogle Scholar
  29. 29.
    Xu, Q., Qian, Q., Quek, A., Ai, N., Zeng, G., Wang, J.: Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain. Chem. Eng. 1, 1092–1101 (2013)CrossRefGoogle Scholar
  30. 30.
    Liu, Z.G., Quek, A., Hoekman, S.K., Balasubramanian, R.: Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103, 943–949 (2013)CrossRefGoogle Scholar
  31. 31.
    Jamari, S.S., Howse, J.R.: The effect of the hydrothermal carbonization process on palm oil empty fruit bunch. Biomass Bioenerg. 47, 82–90 (2012)CrossRefGoogle Scholar
  32. 32.
    Sevilla, M., Fuertes, A.B.: The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47, 2281–2289 (2009)CrossRefGoogle Scholar
  33. 33.
    Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J.: An overview of the organic and inorganic phase composition of biomass. Fuel 94, 1–33 (2012)CrossRefGoogle Scholar
  34. 34.
    Islam, M.A., Kabir, G., Asif, M., Hameed, B.H.: Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresour. Technol. 194, 14–20 (2015)CrossRefGoogle Scholar
  35. 35.
    Haykiri-Acma, H., Yaman, S., Kucukbayrak, S.: Comparison of the thermal re-activities of isolated lignin and holocellulose during pyrolysis. Fuel Process Technol. 91, 759–764 (2010)CrossRefGoogle Scholar
  36. 36.
    Yang, H., Yan, R., Chen, H., Lee, D., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)CrossRefGoogle Scholar
  37. 37.
    Álvarez-Murillo, A., Ledesma, B., Román, S., Sabio, E., Gañán, J.: Biomass pyrolysis toward hydrocarbonization. Influence on subsequent steam gasification processes. J. Anal. Appl. Pyrolysis 113, 380–389 (2015)CrossRefGoogle Scholar
  38. 38.
    Guiotoku, M., Rambo, C.R., Hotza, D.: Charcoal produced from cellulosic raw materials by microwave-assisted hydrothermal carbonization. J. Therm. Anal. Calorim. 117, 269–275 (2014)CrossRefGoogle Scholar
  39. 39.
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., et al.: Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  40. 40.
    Fuertes, A.B., Arbestain, M.C., Sevilla, M., Maciaí-Agulloí, J.A., Fiol, S., Loípez, R., et al.: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust. J. Soil Res. 48, 618–626 (2010)CrossRefGoogle Scholar
  41. 41.
    Mochidzuki, K., Sato, N., Sakoda, A.: Production and characterization of carbonaceous adsorbents from biomass wastes by aqueous phase carbonization. Adsorption 11, 669–673 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of HullHullUK
  2. 2.Department of ChemistryUniversity of IlorinIlorinNigeria

Personalised recommendations