Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 7, pp 1811–1819 | Cite as

Selecting Monitoring Variables in the Manual Composting of Municipal Solid Waste Based on Principal Component Analysis

  • Juan F. SaldarriagaEmail author
  • Jorge L. Gallego
  • Julian E. López
  • Roberto Aguado
  • Martin Olazar
Original Paper
  • 248 Downloads

Abstract

This paper proposes the use of principal component analysis performed on the correlation matrix for identifying the best variables for monitoring the composting of municipal solid wastes. Accordingly, 12 physicochemical and two microbiological parameters have been measured throughout the 7 weeks in which the compositing of 1300 kg of organic wastes obtained from MSW was carried out. All the analyses confirm a correct development of the composting process, and the final values fulfil the requirements of the Colombian legislation. The statistical analysis shows that four variables are sufficient for ensuring a suitable process development and, based on economic criteria and technical simplicity, the selected ones are as follows: respirometry, water retention capacity, ash content and moisture content.

Keywords

Composting Municipal solid waste (MSW) Physicochemical parameters Principal component analysis (PCA) Correlation matrix 

Abbreviations

CEC

Cationic exchange capacity

CFU

Colony forming units

FDA

Fluorescein diacetate assay

ICS

International Classification for Standards

ISO

International Organization for Standardization

mosl

Meters above sea level

MSW

Municipal solid waste

NTC

Colombian standard reference

PCA

Principal component analysis

PLFA

Phospholipid fatty acid analysis

TOC

Total organic carbon

WRC

Water retention capacity

Notes

Acknowledgements

This work was carried out with the financial support of the Department of Civil and Environmental Engineering of the Universidad de los Andes.

References

  1. 1.
    Abouelwafa, R., Amir, S., Souabi, S., Winterton, P., Ndira, V., Revel, J.-C., Hafidi, M.: The fulvic acid fraction as it changes in the mature phase of vegetable oil-mill sludge and domestic waste composting. Bioresour. Technol. 99, 6112–6118 (2008).  https://doi.org/10.1016/j.biortech.2007.12.033 CrossRefGoogle Scholar
  2. 2.
    Albrecht, R., Périssol, C., Ruaudel, F., Petit, J.L., Terrom, G.: Functional changes in culturable microbial communities during a co-composting process: carbon source utilization and co-metabolism. Waste Manag. 30, 764–770 (2010).  https://doi.org/10.1016/j.wasman.2009.12.008 CrossRefGoogle Scholar
  3. 3.
    Alfaro, C.A., Aydın, B., Valencia, C.E., Bullitt, E., Ladha, A.: Dimension reduction in principal component analysis for trees. Comput. Stat. Data Anal. 74, 157–179 (2014).  https://doi.org/10.1016/j.csda.2013.12.007 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Amir, S., Benlboukht, F., Cancian, N., Winterton, P., Hafidi, M.: Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. J. Hazard. Mater. 160, 448–455 (2008).  https://doi.org/10.1016/j.jhazmat.2008.03.017 CrossRefGoogle Scholar
  5. 5.
    Amir, S., Jouraiphy, A., Meddich, A., El Gharous, M., Winterton, P., Hafidi, M.: Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR. J. Hazard. Mater. 177, 524–529 (2010).  https://doi.org/10.1016/j.jhazmat.2009.12.064 CrossRefGoogle Scholar
  6. 6.
    Amir, S., Merlina, G., Pinelli, E., Winterton, P., Revel, J.-C., Hafidi, M.: Microbial community dynamics during composting of sewage sludge and straw studied through phospholipid and neutral lipid analysis. J. Hazard. Mater. 159, 593–601 (2008).  https://doi.org/10.1016/j.jhazmat.2008.02.062 CrossRefGoogle Scholar
  7. 7.
    Awasthi, M.K., Pandey, A.K., Khan, J., Bundela, P.S., Wong, J.W.C., Selvam, A.: Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour. Technol. 168, 214–221 (2014).  https://doi.org/10.1016/j.biortech.2014.01.048 CrossRefGoogle Scholar
  8. 8.
    Baptista, M., Antunes, F., Gonçalves, M.S., Morvan, B., Silveira, A.: Composting kinetics in full-scale mechanical-biological treatment plants. Waste Manag. 30, 1908–1921 (2010).  https://doi.org/10.1016/j.wasman.2010.04.027 CrossRefGoogle Scholar
  9. 9.
    Barrena, R., Turet, J., Busquets, A., Farrés, M., Font, X., Sánchez, A.: Respirometric screening of several types of manure and mixtures intended for composting. Bioresour. Technol. 102, 1367–1377 (2011).  https://doi.org/10.1016/j.biortech.2010.09.011 CrossRefGoogle Scholar
  10. 10.
    Benito, M., Masaguer, A., Moliner, A., Arrigo, N., Palma, R.M.: Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost. Biol. Fertil. Soils. 37, 184–189 (2003).  https://doi.org/10.1007/s00374-003-0584-7 Google Scholar
  11. 11.
    Bernal, M.P., Alburquerque, J.A., Moral, R.: Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100, 5444–5453 (2009).  https://doi.org/10.1016/j.biortech.2008.11.027 CrossRefGoogle Scholar
  12. 12.
    Boulter-Bitzer, J.I., Trevors, J.T., Boland, G.J.: A polyphasic approach for assessing maturity and stability in compost intended for suppression of plant pathogens. Appl. Soil Ecol. 34, 65–81 (2006).  https://doi.org/10.1016/j.apsoil.2005.12.007 CrossRefGoogle Scholar
  13. 13.
    Bueno, P., Tapias, R., López, F., Díaz, M.J.: Optimizing composting parameters for nitrogen conservation in composting. Bioresour. Technol. 99, 5069–5077 (2008).  https://doi.org/10.1016/j.biortech.2007.08.087 CrossRefGoogle Scholar
  14. 14.
    Bustamante, M.A., Paredes, C., Marhuenda-Egea, F.C., Pérez-Espinosa, A., Bernal, M.P., Moral, R.: Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere. 72, 551–557 (2008).  https://doi.org/10.1016/j.chemosphere.2008.03.030 CrossRefGoogle Scholar
  15. 15.
    Cabeza, I.O., López, R., Ruiz-Montoya, M., Díaz, M.J.: Maximising municipal solid waste—legume trimming residue mixture degradation in composting by control parameters optimization. J. Environ. Manag. 128, 266–273 (2013).  https://doi.org/10.1016/j.jenvman.2013.05.030 CrossRefGoogle Scholar
  16. 16.
    Campitelli, P., Ceppi, S.: Chemical, physical and biological compost and vermicompost characterization: a chemometric study. Chemom. Intell. Lab. Syst. 90, 64–71 (2008).  https://doi.org/10.1016/j.chemolab.2007.08.001 CrossRefGoogle Scholar
  17. 17.
    Canet, R., Pomares, F.: Changes in physical, chemical and physico-chemical parameters during the composting of municipal solid wastes in two plants in Valencia. Bioresour. Technol. 51, 259–264 (1995).  https://doi.org/10.1016/0960-8524(94)00132-K CrossRefGoogle Scholar
  18. 18.
    Cherubini, F., Bargigli, S., Ulgiati, S.: Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy. Waste Manag. 28, 2552–2564 (2008).  https://doi.org/10.1016/j.wasman.2007.11.011 CrossRefGoogle Scholar
  19. 19.
    Confesor, R.B. Jr., Hamlett, J.M., Shannon, R.D., Graves, R.E.: Potential pollutants from farm, food and yard waste composts at differing ages: part I physical and chemical properties. Compost Sci. Util. 16, 228–238 (2008).  https://doi.org/10.1080/1065657X.2008.10702384 CrossRefGoogle Scholar
  20. 20.
    Dimambro, M.E., Lillywhite, R.D., Rahn, C.R.: The physical, chemical and microbial characteristics of biodegradable municipal waste derived composts. Compost Sci. Util. 15, 243–252 (2007).  https://doi.org/10.1080/1065657X.2007.10702340 CrossRefGoogle Scholar
  21. 21.
    D’Imporzano, G., Crivelli, F., Adani, F.: Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting. Sci. Total Environ. 402, 278–284 (2008).  https://doi.org/10.1016/j.scitotenv.2008.04.053 CrossRefGoogle Scholar
  22. 22.
    Dresbøll, D.B., Magid, J.: Structural changes of plant residues during decomposition in a compost environment. Bioresour. Technol. 97, 973–981 (2006).  https://doi.org/10.1016/j.biortech.2005.05.003 CrossRefGoogle Scholar
  23. 23.
    Feng, C., Zeng, G., Huang, D., Hu, S., Zhao, M., Lai, C., Huang, C., Wei, Z., Li, N.: Effect of ligninolytic enzymes on lignin degradation and carbon utilization during lignocellulosic waste composting. Process Biochem. 46, 1515–1520 (2011).  https://doi.org/10.1016/j.procbio.2011.01.038 CrossRefGoogle Scholar
  24. 24.
    Fuentes, A., Lloréns, M., Sáez, J., Isabel Aguilar, M., Ortuño, J.F., Meseguer, V.F.: Comparative study of six different sludges by sequential speciation of heavy metals. Bioresour. Technol. 99, 517–525 (2008).  https://doi.org/10.1016/j.biortech.2007.01.025 CrossRefGoogle Scholar
  25. 25.
    Gil, M.V., Calvo, L.F., Blanco, D., Sánchez, M.E.: Assessing the agronomic and environmental effects of the application of cattle manure compost on soil by multivariate methods. Bioresour. Technol. 99, 5763–5772 (2008).  https://doi.org/10.1016/j.biortech.2007.10.014 CrossRefGoogle Scholar
  26. 26.
    Gómez-Brandón, M., Lazcano, C., Domínguez, J.: The evaluation of stability and maturity during the composting of cattle manure. Chemosphere. 70, 436–444 (2008).  https://doi.org/10.1016/j.chemosphere.2007.06.065 CrossRefGoogle Scholar
  27. 27.
    Grigatti, M., Cavani, L., Ciavatta, C.: A multivariate approach to the study of the composting process by means of analytical electrofocusing. Waste Manag. 27, 1072–1082 (2007).  https://doi.org/10.1016/j.wasman.2006.05.011 CrossRefGoogle Scholar
  28. 28.
    Guo, X., Gu, J., Gao, H., Qin, Q., Chen, Z., Shao, L., Chen, L., Li, H., Zhang, W., Chen, S., Liu, J.: Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting. Bioresour. Technol. 108, 140–148 (2012).  https://doi.org/10.1016/j.biortech.2011.12.087 CrossRefGoogle Scholar
  29. 29.
    Hamoda, M.F., Abu Qdais, H.A., Newham, J.: Evaluation of municipal solid waste composting kinetics. Resour. Conserv. Recycl. 23, 209–223 (1998).  https://doi.org/10.1016/S0921-3449(98)00021-4 CrossRefGoogle Scholar
  30. 30.
    Hargreaves, J.C., Adl, M.S., Warman, P.R.: A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 123, 1–14 (2008).  https://doi.org/10.1016/j.agee.2007.07.004 CrossRefGoogle Scholar
  31. 31.
    Hernández, T., Masciandaro, G., Moreno, J.I., García, C.: Changes in organic matter composition during composting of two digested sewage sludges. Waste Manag. 26, 1370–1376 (2006).  https://doi.org/10.1016/j.wasman.2005.10.006 CrossRefGoogle Scholar
  32. 32.
    Himanen, M., Hänninen, K.: Effect of commercial mineral-based additives on composting and compost quality. Waste Manag. 29, 2265–2273 (2009).  https://doi.org/10.1016/j.wasman.2009.03.016 CrossRefGoogle Scholar
  33. 33.
    Iannotti, D.A., Grebus, M.E., Toth, B.L., Madden, L.V., Hoitink, H.a.J.: 1994. Oxygen respirometry to assess stability and maturity of composted municipal solid waste. J. Environ. Qual. 23(6), 1177–1183CrossRefGoogle Scholar
  34. 34.
    Jacobs, R.D.: Basic concepts for composting Poultry Mortalities, Dairy and Poultry Sciences Department. Institute of Food and Agricultural Science, Florida Cooperative Extension Service, Gainesville (1998)Google Scholar
  35. 35.
    Kalamdhad, A.S., Pasha, M., Kazmi, A.A.: Stability evaluation of compost by respiration techniques in a rotary drum composter. Resour. Conserv. Recycl. 52, 829–834 (2008).  https://doi.org/10.1016/j.resconrec.2007.12.003 CrossRefGoogle Scholar
  36. 36.
    Kanat, G., Demir, A., Ozkaya, B., Sinan Bilgili, M.: Addressing the operational problems in a composting and recycling plant. Waste Manag. 26, 1384–1391 (2006).  https://doi.org/10.1016/j.wasman.2005.12.010 CrossRefGoogle Scholar
  37. 37.
    Komilis, D.P., Ham, R.K., Stegmann, R.: The effect of municipal solid waste pretreatment on landfill behavior: a literature review. Waste Manag. Res. 17, 10–19 (1999).  https://doi.org/10.1177/0734242X9901700103 CrossRefGoogle Scholar
  38. 38.
    Lavine, B.K., Davidson, C.E., Ritter, J., Westover, D.J., Hancewicz, T.: Varimax extended rotation applied to multivariate spectroscopic image analysis. Microchem. J. 76, 173–180 (2004).  https://doi.org/10.1016/S0026-265X(03)00159-0 CrossRefGoogle Scholar
  39. 39.
    Li, Z., Lu, H., Ren, L., He, L.: Experimental and modeling approaches for food waste composting: a review. Chemosphere. 93, 1247–1257 (2013).  https://doi.org/10.1016/j.chemosphere.2013.06.064 CrossRefGoogle Scholar
  40. 40.
    López, R., Cabeza, I.O., Giráldez, I., Díaz, M.J.: Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresour. Technol. 102, 7984–7993 (2011).  https://doi.org/10.1016/j.biortech.2011.05.085 CrossRefGoogle Scholar
  41. 41.
    Lu, Y., Wu, X., Guo, J.: Characteristics of municipal solid waste and sewage sludge co-composting. Waste Manag. 29, 1152–1157 (2009).  https://doi.org/10.1016/j.wasman.2008.06.030 CrossRefGoogle Scholar
  42. 42.
    Martínez-Valdez, F.J., Martínez-Ramírez, C., Martínez-Montiel, L., Favela-Torres, E., Soto-Cruz, N.O., Ramírez-Vives, F., Saucedo-Castañeda, G.: Rapid mineralisation of the organic fraction of municipal solid waste. Bioresour. Technol. 180, 112–118 (2015).  https://doi.org/10.1016/j.biortech.2014.12.083 CrossRefGoogle Scholar
  43. 43.
    Martín-Gil, J., Navas-Gracia, L.M., Gómez-Sobrino, E., Correa-Guimaraes, A., Hernández-Navarro, S., Sánchez-Báscones, M., del Carmen Ramos-Sánchez, M.: Composting and vermicomposting experiences in the treatment and bioconversion of asphaltens from the Prestige oil spill. Bioresour. Technol. 99, 1821–1829 (2008).  https://doi.org/10.1016/j.biortech.2007.03.031 CrossRefGoogle Scholar
  44. 44.
    Mohee, R., Mudhoo, A.: Analysis of the physical properties of an in-vessel composting matrix. Powder Technol. 155, 92–99 (2005).  https://doi.org/10.1016/j.powtec.2005.05.051 CrossRefGoogle Scholar
  45. 45.
    Mondini, C., Fornasier, F., Sinicco, T.: Enzymatic activity as a parameter for the characterization of the composting process. Soil Biol. Biochem. 36, 1587–1594 (2004).  https://doi.org/10.1016/j.soilbio.2004.07.008 CrossRefGoogle Scholar
  46. 46.
    Münnich, K., Mahler, C.F., Fricke, K.: Pilot project of mechanical-biological treatment of waste in Brazil. Waste Manag. 26, 150–157 (2006).  https://doi.org/10.1016/j.wasman.2005.07.022 CrossRefGoogle Scholar
  47. 47.
    Onwosi, C.O., Igbokwe, V.C., Odimba, J.N., Eke, I.E., Nwankwoala, M.O., Iroh, I.N., Ezeogu, L.I.: Composting technology in waste stabilization: on the methods, challenges and future prospects. J. Environ. Manag. 190, 140–157 (2017).  https://doi.org/10.1016/j.jenvman.2016.12.051 CrossRefGoogle Scholar
  48. 48.
    Pacheco, J., Casado, S., Porras, S.: Exact methods for variable selection in principal component analysis: guide functions and pre-selection. Comput. Stat. Data Anal. 57, 95–111 (2013).  https://doi.org/10.1016/j.csda.2012.06.014 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Petric, I., Helić, A., Avdić, E.A.: Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure. Bioresour. Technol. 117, 107–116 (2012).  https://doi.org/10.1016/j.biortech.2012.04.046 CrossRefGoogle Scholar
  50. 50.
    Ponsá, S., Gea, T., Alerm, L., Cerezo, J., Sánchez, A.: Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manag. 28, 2735–2742 (2008).  https://doi.org/10.1016/j.wasman.2007.12.002 CrossRefGoogle Scholar
  51. 51.
    Rasapoor, M., Adl, M., Pourazizi, B.: Comparative evaluation of aeration methods for municipal solid waste composting from the perspective of resource management: a practical case study in Tehran. Iran. J. Environ. Manag. 184 (Part 3), 528–534 (2016).  https://doi.org/10.1016/j.jenvman.2016.10.029 CrossRefGoogle Scholar
  52. 52.
    Ruggieri, L., Gea, T., Artola, A., Sánchez, A.: Air filled porosity measurements by air pycnometry in the composting process: a review and a correlation analysis. Bioresour. Technol. 100, 2655–2666 (2009).  https://doi.org/10.1016/j.biortech.2008.12.049 CrossRefGoogle Scholar
  53. 53.
    Saeed, M.O., Hassan, M.N., Mujeebu, M.A.: Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur. Malaysia. Waste Manag. 29, 2209–2213 (2009).  https://doi.org/10.1016/j.wasman.2009.02.017 CrossRefGoogle Scholar
  54. 54.
    Saldarriaga, J.F., Aguado, R., Morales, G.E.: Assessment of VOC emissions from municipal solid waste composting. Environ. Eng. Sci. 31, 300–307 (2014).  https://doi.org/10.1089/ees.2013.0475 CrossRefGoogle Scholar
  55. 55.
    Sharma, V.K., Canditelli, M., Fortuna, F., Cornacchia, G.: Processing of urban and agro-industrial residues by aerobic composting review. Energy Convers. Manag. 38, 453–478 (1997).  https://doi.org/10.1016/S0196-8904(96)00068-4 CrossRefGoogle Scholar
  56. 56.
    Som, M.-P., Lemée, L., Amblès, A.: Stability and maturity of a green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption and thermochemolysis. Bioresour. Technol. 100, 4404–4416 (2009).  https://doi.org/10.1016/j.biortech.2009.04.019 CrossRefGoogle Scholar
  57. 57.
    Sundberg, C., Yu, D., Franke-Whittle, I., Kauppi, S., Smårs, S., Insam, H., Romantschuk, M., Jönsson, H.: Effects of pH and microbial composition on odour in food waste composting. Waste Manag. 33, 204–211 (2013).  https://doi.org/10.1016/j.wasman.2012.09.017 CrossRefGoogle Scholar
  58. 58.
    Tejada, M., García-Martínez, A.M., Parrado, J.: Relationships between biological and chemical parameters on the composting of a municipal solid waste. Bioresour. Technol. 100, 4062–4065 (2009).  https://doi.org/10.1016/j.biortech.2009.03.034 CrossRefGoogle Scholar
  59. 59.
    Tosun, I., Gönüllü, M.T., Arslankaya, E., Günay, A.: Co-composting kinetics of rose processing waste with OFMSW. Bioresour. Technol. 99, 6143–6149 (2008).  https://doi.org/10.1016/j.biortech.2007.12.039 CrossRefGoogle Scholar
  60. 60.
    Tuomela, M., Vikman, M., Hatakka, A., Itävaara, M.: Biodegradation of lignin in a compost environment: a review. Bioresour. Technol. 72, 169–183 (2000).  https://doi.org/10.1016/S0960-8524(99)00104-2 CrossRefGoogle Scholar
  61. 61.
    Turan, N.G., Coruh, S., Akdemir, A., Ergun, O.N.: Municipal solid waste management strategies in Turkey. Waste Manag. 29, 465–469 (2009).  https://doi.org/10.1016/j.wasman.2008.06.004 CrossRefGoogle Scholar
  62. 62.
    Wang, P., Changa, C.M., Watson, M.E., Dick, W.A., Chen, Y., Hoitink, H.A.J.: Maturity indices for composted dairy and pig manures. Soil Biol. Biochem. 36, 767–776 (2004).  https://doi.org/10.1016/j.soilbio.2003.12.012 CrossRefGoogle Scholar
  63. 63.
    Wang, X., Pan, S., Zhang, Z., Lin, X., Zhang, Y., Chen, S.: Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community. Bioresour. Technol. 224, 397–404 (2017).  https://doi.org/10.1016/j.biortech.2016.11.076 CrossRefGoogle Scholar
  64. 64.
    Wei, Y., Li, J., Shi, D., Liu, G., Zhao, Y., Shimaoka, T.: Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour. Conserv. Recycl. 122, 51–65 (2017).  https://doi.org/10.1016/j.resconrec.2017.01.024 CrossRefGoogle Scholar
  65. 65.
    Zbytniewski, R., Buszewski, B.: Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresour. Technol. 96, 471–478 (2005).  https://doi.org/10.1016/j.biortech.2004.05.018 CrossRefGoogle Scholar
  66. 66.
    Zhang, D.-Q., He, P.-J., Jin, T.-F., Shao, L.-M.: Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation. Bioresour. Technol. 99, 8796–8802 (2008).  https://doi.org/10.1016/j.biortech.2008.04.046 CrossRefGoogle Scholar
  67. 67.
    Zmora-Nahum, S., Markovitch, O., Tarchitzky, J., Chen, Y.: Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem. 37, 2109–2116 (2005).  https://doi.org/10.1016/j.soilbio.2005.03.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Juan F. Saldarriaga
    • 1
    Email author
  • Jorge L. Gallego
    • 2
  • Julian E. López
    • 2
  • Roberto Aguado
    • 3
  • Martin Olazar
    • 3
  1. 1.Deparment of Civil and Environmental EngineeringUniversidad de los AndesBogotáColombia
  2. 2.Program of Environmental Engineering, Faculty of EngineeringUniversity of MedellínMedellínColombia
  3. 3.Department of Chemical EngineeringUniversity of the Basque CountryBilbaoSpain

Personalised recommendations