Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 7, pp 1929–1943 | Cite as

Predictive HHV Model for Raw and Torrefied Sugarcane Residues

  • Angelique T. Conag
  • Jaye Earl R. Villahermosa
  • Luis K. Cabatingan
  • Alchris Woo GoEmail author
Original Paper

Abstract

Sugarcane residues (SCR), such as the bagasse and leaves, have the potential to be used as solid fuels either as a direct feed or when utilized after torrefaction. Like any fuel, higher heating value (HHV) is an important characteristic and factor to be considered for applications in combustion systems. Higher heating value is determined through calorimetric analysis, but would require complex experiments and skilled personnel to carry out such analysis. The technical challenges may, however, be avoided through the development of correlations for predicting the heating values of fuels. A predictive HHV model based on the proximate constituents of raw and torrefied SCR was developed in this study since existing models were found inadequate. Moisture is negatively correlated with HHV of fuels but is oftentimes excluded as a parameter in the models established. In principle, moisture does not contribute to the HHV, as it does not undergo combustion. However, it was observed that additional energy was required to release the moisture from the biomass matrix, thus contributing to the decrease in HHV. The general model was established through multivariate linear regression following the least squares method with data gathered from both actual experiments as well as those which have been reported in literature. The developed predictive HHV model has a coefficient of determination (r2) of at least 0.90 with a mean absolute error of < 6% and a mean bias error of < 1%. The predictive model was established in anticipation of potential utilization of SCR as a renewable source of energy.

Keywords

Heating value model Moisture Sugarcane bagasse Sugarcane leaves Torrefaction 

Abbreviations

SCL

Sugarcane leaves

SCB

Sugarcane bagasse

SCR

Sugarcane residue

M

Moisture

FC

Fixed carbon

VM

Volatile matter

HHV

Higher heating value

SEE

Standard error of estimate

MAE

Mean absolute error

MBE

Mean bias error

r2

Coefficient of determination

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Food and Agricultural Organization of the United Nations Statistics Division, FAOSTAT: Production/crops processed. Food and Agricultural Organization of the United Nations Statistics Division; 2014Google Scholar
  2. 2.
    Paes, L.A.D., Oliveira, M.: Potential trash biomass of the sugar cane plant. In: Hassuani, S.J., Leal, M.R.L.V., de Carvalho Macedo, I. (eds.) Biomass power Gener. Sugar cane bagasse trash, 1st edn., pp. 19–23. Programa das Nacoes Unidas para o Desenvolvimento, Centro de Tecnologia Canavieira, Brazil (2005)Google Scholar
  3. 3.
    Rodrigues Filho, J.P.: Trash recovery cost. In: Hassuani, SJ., Leal, MRLV., de Carvalho Macedo, I. (eds.) Biomass power Gener. Sugar cane bagasse trash, 1st edn., pp. 74–85. Programa das Nacoes Unidas para o Desenvolvimento, Centro de Tecnologia Canavieira, Brazil (2005)Google Scholar
  4. 4.
    Daniyanto, S., Deendarlianto, Budiman, A.: Torrefaction of Indonesian sugar-cane bagasse to improve bio-syngas quality for gasification process. Energy Proc. 68, 157–166 (2015).  https://doi.org/10.1016/j.egypro.2015.03.244 CrossRefGoogle Scholar
  5. 5.
    Neto, M.A.: Characterization of sugar cane trash and bagasse. In: Hassuani, S.J., Leal, M.R.L.V., de Carvalho Macedo, I. (eds.) Biomass power Gener. Sugar cane bagasse trash, 1st edn., pp. 24–26. Programa das Nacoes Unidas para o Desenvolvimento, Centro de Tecnologia Canavieira, Brazil (2005)Google Scholar
  6. 6.
    British Petroleum Company: BP statistical review of world energy: Full report, pp. 1–48. British Petroluem Co., London (2016)Google Scholar
  7. 7.
    Oudenhoven, S.R.G., Kersten, S.R.A.: Thermochemical conversion: an introduction to fast pyrolysis. In: De Jong W., van Ommen J.R. (eds.) Biomass as a sustainable energy source for the future: fundamentals of conversion processes, pp. 359–385. Wiley, New Jersey (2015)Google Scholar
  8. 8.
    Kiel, J.H.A., Janssen, A.H.H., Joshi, Y.: Thermochemical conversion: torrefaction. In: de Jong W., van Ommen J.R. (eds.) Biomass as a sustainable energy source for the future: fundamentals of conversion processes, pp. 388–401. Wiley, New Jersey (2015)Google Scholar
  9. 9.
    Ohm, T.I., Chae, J.S., Kim, J.K., Oh, S.C.: Study on the characteristics of biomass for co-combustion in coal power plant. J. Mater. Cycles Waste Manag. 17, 249–257 (2015).  https://doi.org/10.1007/s10163-014-0334-y CrossRefGoogle Scholar
  10. 10.
    Pimchuai, A., Dutta, A., Basu, P.: Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels. 24, 4638–4645 (2010).  https://doi.org/10.1021/ef901168f CrossRefGoogle Scholar
  11. 11.
    Patel, B., Gami, B., Bhimani, H.: Improved fuel characteristics of cotton stalk, prosopis and sugarcane bagasse through torrefaction. Energy Sustain. Dev. 15, 372–375 (2011).  https://doi.org/10.1016/j.esd.2011.05.002 CrossRefGoogle Scholar
  12. 12.
    Anukam, A., Mamphweli, S., Reddy, P., Okoh, O., Meyer, E.: An investigation into the impact of reaction temperature on various parameters during torrefaction of sugarcane bagasse relevant to gasification. J. Chem. (2015).  https://doi.org/10.1155/2015/235163 Google Scholar
  13. 13.
    Chen, W.H., Du, S.W., Tsai, C.H., Wang, Z.Y.: Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces. Bioresour. Technol. 111, 433–438 (2012).  https://doi.org/10.1016/j.biortech.2012.01.163 CrossRefGoogle Scholar
  14. 14.
    Soponpongpipat, N., Sittikul, D., Sae-Ueng, U.: Higher heating value prediction of torrefaction char produced from non-woody biomass. Front. Energy. 9, 461–471 (2015).  https://doi.org/10.1007/s11708-015-0377-3 CrossRefGoogle Scholar
  15. 15.
    Vargas-Moreno, J.M., Callejón-Ferre, A.J., Pérez-Alonso, J., Velázquez-Martí, B.: A review of the mathematical models for predicting the heating value of biomass materials. Renew. Sustain. Energy Rev. 16, 3065–3083 (2012)CrossRefGoogle Scholar
  16. 16.
    Parikh, S.C.: PPA unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 81, 1051–1063 (2002)CrossRefGoogle Scholar
  17. 17.
    Demirbas, A., Demirbas, A.H.: Estimating the calorific values of lignocellulosic fuels. Energy Explor. Exploit. 22, 135–144 (2004).  https://doi.org/10.1260/0144598041475198 CrossRefGoogle Scholar
  18. 18.
    Sheng, C., Azevedo, J.L.T.: Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenerg. 28, 499–507 (2005).  https://doi.org/10.1016/j.biombioe.2004.11.008 CrossRefGoogle Scholar
  19. 19.
    Callejón-Ferre, A.J., Velázquez-Martí, B., López-Martínez, J.A., Manzano-Agugliaro, F.: Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renew. Sustain. Energy Rev. 15, 948–955 (2011).  https://doi.org/10.1016/j.rser.2010.11.012 CrossRefGoogle Scholar
  20. 20.
    Yin, C.-Y.: Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel. 90, 1128–1132 (2011)CrossRefGoogle Scholar
  21. 21.
    Ghugare, S.B., Tiwary, S., Elangovan, V., Tambe, S.S.: Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms. Bioenergy Res. 7, 681–692 (2014).  https://doi.org/10.1007/s12155-013-9393-5 CrossRefGoogle Scholar
  22. 22.
    Phichai, K., Pragrobpondee, P., Khumpart, T., Hirunpraditkoon, S.: Prediction heating values of lignocellulosics from biomass characteristics. Int. J. Chem. Mater. Sci. Eng. 7, 1–4 (2013)Google Scholar
  23. 23.
    Hatfield, R., Fukushima, R.S.: Can lignin be accurately measured? Crop Sci. 45, 832–839 (2005).  https://doi.org/10.2135/cropsci2004.0238 CrossRefGoogle Scholar
  24. 24.
    Jimenez, L., Gonzalez, F.: Study of the physical and chemical-properties of lignocellulosic residues with a view to the production of fuels. Fuel. 70, 947–950 (1991).  https://doi.org/10.1016/0016-2361(91)90049-g CrossRefGoogle Scholar
  25. 25.
    Demirbaş, A.: Relationships between lignin contents and heating values of biomass. Energy Convers. Manag. 42, 183–188 (2001).  https://doi.org/10.1016/S0196-8904(00)00050-9 CrossRefGoogle Scholar
  26. 26.
    Demirbas, A.: Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit. 20, 105–111 (2002).  https://doi.org/10.1260/014459802760170420 CrossRefGoogle Scholar
  27. 27.
    Demirbaş, A.: Relationships between heating value and lignin, fixed carbon, and volatile material contents of shells from biomass products. Energy Sources. 25, 629–635 (2003).  https://doi.org/10.1080/00908310303407 CrossRefGoogle Scholar
  28. 28.
    Acar, S., Ayanoglu, A.: Determination of higher heating values (HHVs) of biomass fuels. Energy Educ. Sci. Technol. A. 28, 749–758 (2012)Google Scholar
  29. 29.
    Nhuchhen, D., Afzal, M.: HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioengineering. 4, 7 (2017).  https://doi.org/10.3390/bioengineering4010007 CrossRefGoogle Scholar
  30. 30.
    Nhuchhen, D.R., Abdul Salam, P.: Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel. 99, 55–63 (2012).  https://doi.org/10.1016/j.fuel.2012.04.015 CrossRefGoogle Scholar
  31. 31.
    Cordero, T., Marquez, F., Rodriguez-Mirasol, J., Rodriguez, J.: Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel. 80, 1567–1571 (2001).  https://doi.org/10.1016/S0016-2361(01)00034-5 CrossRefGoogle Scholar
  32. 32.
    Parikh, J., Channiwala, S.A., Ghosal, G.K.: A correlation for calculating HHV from proximate analysis of solid fuels. Fuel. 84, 487–494 (2005).  https://doi.org/10.1016/j.fuel.2004.10.010 CrossRefGoogle Scholar
  33. 33.
    Demirbas, A.: Prediction of higher heating values for vegetable oils and animal fats from proximate analysis data. Energy Sources A. 31, 1264–1270 (2009).  https://doi.org/10.1080/15567030802089532 CrossRefGoogle Scholar
  34. 34.
    Ozveren, U.: An artificial intelligence approach to predict gross heating value of lignocellulosic fuels. J. Energy Inst. 2016:1–11.  https://doi.org/10.1016/j.joei.2016.04.003
  35. 35.
    Estiati, I., Freire, F.B., Freire, J.T., Aguado, R., Olazar, M.: Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass. Fuel. 180, 377–383 (2016).  https://doi.org/10.1016/j.fuel.2016.04.051 CrossRefGoogle Scholar
  36. 36.
    ASTM: Standard test method for chemical analysis of wood charcol D1762-84. Am. Soc. Test Mater. 84, 1–2 (2013).  https://doi.org/10.1520/D1762-84R13.2 Google Scholar
  37. 37.
    Parr. Operating instructions for the 1108 oxygen combustion bomb, pp. 1–12 (2007)Google Scholar
  38. 38.
    Conag, A.T., Villahermosa, J.E.R., Cabatingan, L.K., Go, A.W.: Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere. J. Environ. Chem. Eng. 5, 5411–5419 (2017).  https://doi.org/10.1016/j.jece.2017.10.032 CrossRefGoogle Scholar
  39. 39.
    Conag, A.T., Villahermosa, J.E.R., Cabatingan, L.K., Go, A.W.: Energy for sustainable development energy densification of sugarcane leaves through torrefaction under minimized oxidative atmosphere. Energy Sustain. Dev. 42, 160–169 (2018).  https://doi.org/10.1016/j.esd.2017.11.004 CrossRefGoogle Scholar
  40. 40.
    Jorapur, R., Rajvanshi, A.K.: Sugarcane leaf-bagasse gasifiers for industrial heating applications. Biomass Bioenerg. 13, 141–146 (1997).  https://doi.org/10.1016/S0961-9534(97)00014-7 CrossRefGoogle Scholar
  41. 41.
    Vyas, D.K., Sayyad, F.G., Khardiwar, M.S., Kumar, S.: Physicochemical properties of briquettes from different feed stock. Curr. World Environ. 10, 263–269 (2015)CrossRefGoogle Scholar
  42. 42.
    Parikh, J., Channiwala, S.A., Ghosal, G.K.: A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel. 86, 1710–1719 (2007).  https://doi.org/10.1016/j.fuel.2006.12.029 CrossRefGoogle Scholar
  43. 43.
    Mosiori, G.O., Onindo, C.O., Mugabi, P., Tumwebaze, S.B., Bagabo, S., Johnson, R.B.: Characteristics of potential gasifier fuels in selected regions of the Lake Victoria Basin. S. Afr. J. Sci. 111, 1–6 (2015).  https://doi.org/10.17159/sajs.2015/20140151 CrossRefGoogle Scholar
  44. 44.
    Garivait, S., Chaiyo, U., Patumsawad, S., Deakhuntod, J.: Physical and chemical properties of thai biomass fuels from agricultural residues. In: Proceedings of the 2nd Joint International Conference on Sustainable Energy and Environment (SEE 2006), Vol. 48, pp. 1–5, 2006Google Scholar
  45. 45.
    Du, S.W., Chen, W.H., Lucas, J.A.: Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection. Bioresour. Technol. 161, 333–339 (2014).  https://doi.org/10.1016/j.biortech.2014.03.090 CrossRefGoogle Scholar
  46. 46.
    Munir, S., Daood, S.S., Nimmo, W., Cunliffe, A.M., Gibbs, B.M.: Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol. 100, 1413–1418 (2009).  https://doi.org/10.1016/j.biortech.2008.07.065 CrossRefGoogle Scholar
  47. 47.
    Granados, D.A., Velásquez, H.I., Chejne, F.: Energetic and exegetic evaluation of residual biomass in a torrefaction process. Energy. 74, 181–189 (2014).  https://doi.org/10.1016/j.energy.2014.05.046 CrossRefGoogle Scholar
  48. 48.
    Suárez, J.A., Luengo, C.A., Felfli, F.F., Bezzon, G.: Thermochemical properties of cuban biomass. Energy Sources. 22, 37–41 (2010).  https://doi.org/10.1080/00908310051128156 Google Scholar
  49. 49.
    Gómez, E.O., Torres, R., De Souza, G., Jackson, G.: Sugarcane trash a feedstock for second generation processes. In: Cortez, L.A.B., (ed). Sugarcane bioethanol: R&D for productivity and sustainability. Blucher, São Paulo (2014)Google Scholar
  50. 50.
    Mesroghli, S., Jorjani, E., Chehreh Chelgani, S.: Estimation of gross calorific value based on coal analysis using regression and artificial neural networks. Int J Coal Geol. 79, 49–54 (2009).  https://doi.org/10.1016/j.coal.2009.04.002 CrossRefGoogle Scholar
  51. 51.
    Joshi, Y., Di Marcello, M., Krishnamurthy, E., De Jong, W.: Packed-bed torrefaction of bagasse under inert and oxygenated atmospheres. Energy Fuels. 29, 5078–5087 (2015).  https://doi.org/10.1021/acs.energyfuels.5b00779 CrossRefGoogle Scholar
  52. 52.
    Garca-Pèrez, M., Chaala, A., Roy, C.: Vacuum pyrolysis of sugarcane bagasse. J. Anal. Appl. Pyrolysis. 65, 111–136 (2002).  https://doi.org/10.1016/S0165-2370(01)00184-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Angelique T. Conag
    • 1
  • Jaye Earl R. Villahermosa
    • 1
  • Luis K. Cabatingan
    • 1
  • Alchris Woo Go
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of San CarlosCebu CityPhilippines

Personalised recommendations