Waste and Biomass Valorization

, Volume 10, Issue 7, pp 1899–1912 | Cite as

Bioconversion of Sugarcane Bagasse into Value-Added Products by Bioaugmentation of Endogenous Cellulolytic and Fermentative Communities

  • Laís Américo Soares
  • Juliana Kawanish Braga
  • Fabrício Motteran
  • Isabel Kimiko Sakamoto
  • Patrícia Aparecida Santiago Monteiro
  • Paulo SeleghimJr.
  • Maria Bernadete Amâncio VarescheEmail author
Original Paper


The goals of this study were to describe a comprehensive taxonomic profile of bacterial communities endogenous from sugarcane bagasse (SCB) and from a thermophilic sludge formed mainly by Proteobacteria Actinobacteria and Firmicutes phylum and its potential as a bioaugmented inoculum for degradation of lignocellulosic biomass. Batch assays were performed using SCB as substrate at different condition: (RC) 2 g L−1 glucose, (R1i) 2 g L−1 unpretreated SCB, (R2i) 2 g L−1 hydrothermally pretreated SCB (at 210 °C for 15 min), (R3i) 2 g L−1 hydrothermally pretreated SCB (at 210 °C for 15 min) followed by alkaline delignification (NaOH—1 M), (R4i) 1 g L−1 unpretreated SCB plus 1 g L−1 hydrothermally pretreated SCB (at 210 °C for 15 min) followed by alkaline delignification. Hydrogen, methane and organic acids were the main metabolites produced during the fermentation. Maximum hydrogen (2.01 and 1.09 mol H2 mol−1 consumed soluble carbohydrates) were obtained in R1i and R2i, respectively. The highest organic acid (1051 mg L−1) and methane (0.92 mmo L−1) production were obtained in R4i.


Alkaline delignification Bioenergy Hydrothermal pretreatment Waste treatment 



Thanks the financial support of the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP- Process Number 2013/22346-6 and 2009/15984-0).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

12649_2018_201_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 KB)


  1. 1.
    MAPA, Ministério da Agricultura, PeA.: Sucroenergia,, (2016)
  2. 2.
    Cgee: Química verde no Brasil: 2010–2030. (2010)Google Scholar
  3. 3.
    Cheng, J., Zhu, M.: A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Bioresour. Technol. 144, 623–631 (2013)CrossRefGoogle Scholar
  4. 4.
    Sauer, M., Porro, D., Mattanovich, D., Branduardi, P.: Microbial production of organic acids: expanding the markets. Trends Biotechnol. 26, 100–108 (2008)CrossRefGoogle Scholar
  5. 5.
    Chu, C., Ebie, Y., Xu, K., Li, Y., Inamori, Y.: Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste. Int. J. Hydrog. Energy 35, 8253–8261 (2010)CrossRefGoogle Scholar
  6. 6.
    Guo, X.M., Trably, E., Latrille, E., Carrere, H., Steyer, J.P.: Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int. J. Hydrog Energy 39, 7476–7485(2013)Google Scholar
  7. 7.
    Liu, Y., Xu, J., Zhang, Y., Yuan, Z., He, M., Liang, C., Zhuang, X., Xie, J.: Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy 90, 1199–1205 (2015)CrossRefGoogle Scholar
  8. 8.
    Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review q. Bioresour. Technol. 83, 1–11 (2002)CrossRefGoogle Scholar
  9. 9.
    Ratti, R.P., Delforno, T.P., Sakamoto, I.K., Varesche, M.B.A.: Thermophilic hydrogen production from sugarcane bagasse pretreated by steam explosion and alkaline delignification. Int. J. Hydrog. Energy 40, 6296–6306 (2015)CrossRefGoogle Scholar
  10. 10.
    Bielen, A., Verhaart, M., van der Oost, J., Kengen, S.: Biohydrogen production by the thermophilic bacterium caldicellulosiruptor saccharolyticus: current status and perspectives. Life 3, 52–85 (2013)CrossRefGoogle Scholar
  11. 11.
    Maki, M., Leung, K.T., Qin, W.: The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass the prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass Page 2 sur 8. Int. J. Biol. Sci. 5, 1–8 (2013)Google Scholar
  12. 12.
    Marone, A., Massini, G., Patriarca, C., Signorini, A., Varrone, C., Izzo, G.: Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. Int. J. Hydrog. Energy 37, 5612–5622 (2012)CrossRefGoogle Scholar
  13. 13.
    Allen, S.G., Schulman, D., Lichwa, J., Antal, M.J., Laser, M., Lynd, L.R.: A comparison between hot liquid water and steam fractionation of corn fiber. Ind. Eng. Chem. Res. 40, 2934–2941 (2001)CrossRefGoogle Scholar
  14. 14.
    Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010)CrossRefGoogle Scholar
  15. 15.
    Holliday, R., King, J., List, G.: Hydrolysis of vegetable oils in sub-and supercritical water. Ind. Eng. Chem. 36, 935 (1997)Google Scholar
  16. 16.
    King, J., Holliday, R., List, G.: Hydrolysis of soybean oil in a subcritical water flow reactor. Green Chem. 261–264 (1999)Google Scholar
  17. 17.
    Sun, S., Cao, X., Sun, S., Xu, F., Song, X., Sun, R.-C., Jones, G.L.: Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnol. Biofuels. 7, 116 (2014)Google Scholar
  18. 18.
    Ewanick, S.M., Bura, R.: Hydrothermal pretreatment of lignocellulosic biomass. Biol. Prod. 142, 3(2010)Google Scholar
  19. 19.
    Kundu, K., Sharma, S., Sreekrishnan, T.R.: Effect of operating temperatures on the microbial community profiles in a high cell density hybrid anaerobic bioreactor. Bioresour. Technol. 118, 502–511 (2012)CrossRefGoogle Scholar
  20. 20.
    Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrogen Energy 34, 799–811 (2009)CrossRefGoogle Scholar
  21. 21.
    Cheng, L., Dai, L., Li, X., Zhang, H., Lu, Y.: Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the shengli oil field. Appl. Environ. Microbiol. 77, 5212–5219 (2011)CrossRefGoogle Scholar
  22. 22.
    Regiane, B., Ratti, P., Kimiko, I.: Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum. Bioprocess Biosyst. Eng. 39, 1887–1897 (2016)CrossRefGoogle Scholar
  23. 23.
    Ratti, R.P., Botta, L.S., Sakamoto, I.K., Varesche, M.B.A.: Microbial diversity of hydrogen-producing bacteria in batch reactors fed with cellulose using leachate as inoculum. Int. J. Hydrog. Energy 38, 9707–9717 (2013)CrossRefGoogle Scholar
  24. 24.
    Soares, L.A., Braga, J.K., Motteran, F., Sakamoto, I.K., Silva, E.L., Varesche, M.B.A.: Design and optimization of hydrogen production from hydrothermally pretreated sugarcane bagasse using response surface methodology. Water Sci. Technol. 76, 95 (2017)CrossRefGoogle Scholar
  25. 25.
    Jacquet, N., Quiévy, N., Vanderghem, C., Janas, S., Blecker, C., Wathelet, B., Devaux, J., Paquot, M.: Influence of steam explosion on the thermal stability of cellulose fibres. Polym. Degrad. Stab. 96, 1582–1588 (2011)CrossRefGoogle Scholar
  26. 26.
    Atlas, R.M.: Handbook of Media for Environmental Microbiology, CRC Press, Boca Raton (2005)CrossRefGoogle Scholar
  27. 27.
    Penteado, E.D., Lazaro, C.Z., Sakamoto, I.K., Zaiat, M.: Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int. J. Hydrog. Energy 38, 6137–6145 (2013)CrossRefGoogle Scholar
  28. 28.
    APHA.: Standard Methods for the Examination of Water and Wastewater. Am. Public Heal. Assoc. Am. Water Work. Assoc. Water Environ. Fed. (2005)Google Scholar
  29. 29.
    DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  30. 30.
    Zwietering, M.H., Jongenburger, I., Rombouts, F.M., van’t Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990)Google Scholar
  31. 31.
    Griffiths, R.I., Whiteley, A.S., Anthony, G., Donnell, O., Bailey, M.J.: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 1–5 (2000)CrossRefGoogle Scholar
  32. 32.
    Kudo, Y., Nakajima, T., Miyaki, T., Oyaizu, H.: Methanogen flora of paddy soils in Japan. FEMS Microbiol. Ecol. 22, 39 (1997)CrossRefGoogle Scholar
  33. 33.
    Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W., Backhaus, H.: Sequence heterogeneities of genes encoding 16S rRNA in Paenibacillus polymyxy detected by temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 178, 5636–5643 (1996)Google Scholar
  34. 34.
    Muyzer, G., De Waal, E.C., Uitterlinden, A.G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993)Google Scholar
  35. 35.
    Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O.: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013)CrossRefGoogle Scholar
  36. 36.
    Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., Tiedje, J.M.: Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633 (2014)CrossRefGoogle Scholar
  37. 37.
    Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R.: QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010)CrossRefGoogle Scholar
  38. 38.
    Wirth, R., Kovács, E., Maróti, G., Bagi, Z., Rákhely, G., Kovács, K.L.: Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol. Biofuels 5, 41 (2012)CrossRefGoogle Scholar
  39. 39.
    Masai, E., Katayama, Y., Nishikawa, S., Fukuda, M.: Characterization of Sphingomonas paucimobilis SYK-6 genes involved in degradation of lignin-related compounds. J. Ind. Microbiol. Biotechnol. 23, 364–373 (1999)CrossRefGoogle Scholar
  40. 40.
    Brown, M.E., Walker, M.C., Nakashige, T.G., Iavarone, A.T., Chang, M.C.Y.: Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J. Am. Chem. Soc. 133, 18006–18009 (2011)CrossRefGoogle Scholar
  41. 41.
    Jing, D., Wang, J.: Controlling the simultaneous production of laccase and lignin peroxidase from Streptomyces cinnamomensis by medium formulation. Biotechnol. Biofuels 5, 15 (2012)CrossRefGoogle Scholar
  42. 42.
    Franco-Cirigliano, M.N., Rezende, R.D.C., Gravina-Oliveira, M.P., Pereira, P.H.F., Do Nascimento, R.P., Bon, E.P.D.S., Macrae, A., Coelho, R.R.R.: Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. Biomed Res. Int. 2013, (2013)Google Scholar
  43. 43.
    Brito-Cunha, C.C.D.Q., De Campos, I.T.N., De Faria, F.P., Bataus, L.A.M.: Screening and xylanase production by streptomyces sp. grown on lignocellulosic wastes. Appl. Biochem. Biotechnol. 170, 598–608 (2013)CrossRefGoogle Scholar
  44. 44.
    de Lima Brossi, M.J., Jimenez, D.J., Cortes-Tolalpa, L., van Elsas, J.D.: Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose. Degrad. Microb. Ecol. 71, 616 (2015)CrossRefGoogle Scholar
  45. 45.
    Mathews, S.L., Pawlak, J.J., Grunden, A.M.: Isolation of Paenibacillus glucanolyticus from pulp mill sources with potential to deconstruct pulping waste. Bioresour. Technol. 164, 100–105 (2014)CrossRefGoogle Scholar
  46. 46.
    Chen, Y., Chai, L., Tang, C., Yang, Z., Zheng, Y., Shi, Y., Zhang, H.: Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour. Technol. 123, 682–685 (2012)CrossRefGoogle Scholar
  47. 47.
    Dietrich, D., Illman, B., Crooks, C.: Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava. BMC Res. Notes 6, 219 (2013)CrossRefGoogle Scholar
  48. 48.
    Choi, S.Y., Gong, G., Park, H.S., Um, Y., Sim, S.J., Woo, H.M.: Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036. J. Biotechnol. 193, 11–13 (2015)CrossRefGoogle Scholar
  49. 49.
    Errington, J.: Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1, 117–126 (2003)CrossRefGoogle Scholar
  50. 50.
    Canganella, F., Wiegel, J.: Anaerobic thermophiles. Life 4, 77–104 (2014)CrossRefGoogle Scholar
  51. 51.
    Saripan, A.F., Reungsang, A.: Biohydrogen production by thermoanaerobacterium thermosaccharolyticum KKU-ED1: culture conditions optimization using xylan as the substrate. Int. J. Hydrog. Energy 38, 6167–6173 (2013)CrossRefGoogle Scholar
  52. 52.
    Li, Q., Liu, C.-Z.: Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste. Int. J. Hydrog. Energy 37, 10648–10654 (2012)CrossRefGoogle Scholar
  53. 53.
    Maune, M.W., Tanner, R.S.: Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int. J. Syst. Evol. Microbiol. 62, 832–838 (2012)CrossRefGoogle Scholar
  54. 54.
    Tandishabo, K., Nakamura, K., Umetsu, K., Takamizawa, K.: Distribution and role of Coprothermobacter spp. in anaerobic digesters. J. Biosci. Bioeng. 114, 518–520 (2012)CrossRefGoogle Scholar
  55. 55.
    Cao, G.-L., Zhao, L., Wang, A.-J., Wang, Z.-Y., Ren, N.-Q.: Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol. Biofuels 7, 82 (2014)CrossRefGoogle Scholar
  56. 56.
    Gagliano, M.C., Braguglia, C.M., Petruccioli, M., Rossetti, S.: Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp. FEMS Microbiol. Ecol. 91, 1–12 (2015)CrossRefGoogle Scholar
  57. 57.
    Sasaki, K., Morita, M., Sasaki, D., Nagaoka, J., Matsumoto, N., Ohmura, N., Shinozaki, H.: Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J. Biosci. Bioeng. 112, 469–472 (2011)CrossRefGoogle Scholar
  58. 58.
    Smith, K.S., Ingram-Smith, C.: Methanosaeta, the forgotten methanogen? TRENDS Microbiol. 15, 150–155 (2007)CrossRefGoogle Scholar
  59. 59.
    Kuever, J., Rainey, F.A., Widdel, F.: Bergey’s Manual of Systematic Bacteriology Volume 1: The Archaea and the Deeply Branching and Phototrophic Bacteria. Bergey’s Manual of Systematic Bacteriology. Springer, New York, pp. 1007–1010 (2005)CrossRefGoogle Scholar
  60. 60.
    Gonzales, R.R., Sivagurunathan, P., Parthiban, A., Kim, S.H.: Optimization of substrate concentration of dilute acid hydrolyzate of lignocellulosic biomass in batch hydrogen production. Int. Biodeterior. Biodegrad. 113, 22–27 (2016)CrossRefGoogle Scholar
  61. 61.
    Masset, J., Calusinska, M., Hamilton, C., Hiligsmann, S., Joris, B., Wilmotte, A., Thonart, P.: Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol. Biofuels 5, 35 (2012)CrossRefGoogle Scholar
  62. 62.
    Kumar, S.S., Sangeeta, R., Soumya, S., Ranjan, R.P., Bidyut, B., Kumar, D.M.P.: Characterizing novel thermophilic amylase producing bacteria from Taptapani hot spring, Odisha, India. Jundishapur J. Microbiol. 7, 10 (2014)CrossRefGoogle Scholar
  63. 63.
    Quéméneur, M., Hamelin, J., Barakat, A., Steyer, J.P., Carrre, H., Trably, E.: Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int. J. Hydrog. Energy 37, 3150–3159 (2012)CrossRefGoogle Scholar
  64. 64.
    Rasmussen, H., Sørensen, H.R., Meyer, A.S.: Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr. Res. 385, 45–57 (2014)CrossRefGoogle Scholar
  65. 65.
    Levin, D.B., Carere, C.R., Cicek, N., Sparling, R.: Challenges for biohydrogen production via direct lignocellulose fermentation. Int. J. Hydrog. Energy 34, 7390–7403 (2009)CrossRefGoogle Scholar
  66. 66.
    Lo, Y.C., Saratale, G.D., Chen, W.M., Bai, M., Chang, J.S.: Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme Microb. Technol. 44, 417–425 (2009)CrossRefGoogle Scholar
  67. 67.
    Nissilä, M.E., Tähti, H.P., Rintala, J.A., Puhakka, J.A.: Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. Bioresour. Technol. 102, 4501–4506 (2011)CrossRefGoogle Scholar
  68. 68.
    Luo, G., Xie, L., Zou, Z., Wang, W., Zhou, Q.: Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour. Technol. 101, 959–964 (2010)CrossRefGoogle Scholar
  69. 69.
    HJ, B., G, A.: Bergey’s manual of systematic bacteriology. Man Syst Bacteriol.
  70. 70.
    Mosey, F.E.: Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci. Technol. 15, 209 (1983)CrossRefGoogle Scholar
  71. 71.
    Li, C., Fang, H.H.P.: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37, 1 (2007)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Cai, M., Liu, J., Wei, Y.: Enhanced biohydrogen production from sewage sludge with alkaline. Environ. Sci. Technol. 38, 3195–3202 (2004)CrossRefGoogle Scholar
  73. 73.
    Kim, J., Yu, Y., Lee, C.: Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: effects on sludge disintegration, methane production, and methanogen community structure. Bioresour. Technol. 144, 194–201 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Laís Américo Soares
    • 1
  • Juliana Kawanish Braga
    • 1
  • Fabrício Motteran
    • 1
  • Isabel Kimiko Sakamoto
    • 1
  • Patrícia Aparecida Santiago Monteiro
    • 2
  • Paulo SeleghimJr.
    • 2
  • Maria Bernadete Amâncio Varesche
    • 1
    Email author
  1. 1.University of São PauloSão CarlosBrazil
  2. 2.USP University of São PauloSão CarlosBrazil

Personalised recommendations