Waste and Biomass Valorization

, Volume 10, Issue 7, pp 2015–2035 | Cite as

Combustion and Emission Characteristics of Egyptian Sugarcane Bagasse and Cotton Stalks Powders in a Bubbling Fluidized Bed Combustor

  • Saad A. El-SayedEmail author
  • Mohamed E. Mostafa
Original Paper


Combustion and emission characteristics of Egyptian sugarcane bagasse and cotton stalks powders were investigated in a bubbling fluidized bed combustor (BFBC) using silica sand as an inert bed material. Mixing and fluidizing characteristics of the two biomass materials and bed material of a certain size distribution were studied. It was found that, the feed rate ranged from 70 to 113 g/min and feed rate of 51 g/min for cotton stalks and sugarcane bagasse, respectively may be suitable for better combustion characteristics in the BFBC. The effect of different operating parameters on the axial temperature and gas concentration profiles (O2, CO2, CO, H2S, SO2 and NOx) was investigated. It was found that the formation of NOX during combustion doesn’t represent a problem as the nitrogen content of fuel is low, the bed temperature of fluidized bed is below 900 °C, and the particle size of the biomass is small. It was found that combustion efficiency ranged from 90 to 100% and from 93 to 98.8% for sugarcane bagasse and cotton stalks, respectively. Thermal efficiency was found to be in the range of (33.7–41%) and (32.5–48.7%) for sugarcane bagasse and cotton stalks, respectively. A verification model for mass and heat balance of combustion experiments was constructed to confirm that the measured values of different parameters were measured accurately with acceptable percent of error.


Bubbling fluidized bed combustor Axial temperature distribution Exhaust emissions Combustion efficiency Thermal efficiency Mass and energy balance 

List of Symbols


Particle diameter (m)



\({\rho _b}\)

Bulk density (kg/m3)


Theoretical amount of air required for combustion of one kilogram of fuel \(\left( {{\text{m}}_{{{\text{air}}}}^{3}/{\text{k}}{{\text{g}}_{\text{f}}}} \right)\)


Amount of air required for complete combustion of one kilogram of fuel \(\left( {{\text{k}}{{\text{g}}_{{\text{air}}}}/{\text{k}}{{\text{g}}_{\text{f}}}} \right)\)

\({\dot {Q}_C}\)

Theoretical volume flow rate of air (m3/min)

\(\dot {Q}\)

Volume flow rate of total air at any velocity (m3/min)


Biomass material feeding rate (g/min)


Minimum fluidization velocity (m/s)


Minimum fluidization velocity of the binary mixture (m/s)


Fluidizing velocity (m/s)


Amount of gas passing through the emulsion phase is equal to that required for minimum fluidization (m3/min)

\({{\text{A}}_{\text{b}}}\left( {{\text{U}} - {{\text{U}}_{{\text{mf}}}}} \right)\)

The remaining gas passes through the bubble phase (m3/min)


Cross sectional area of the bed (m2)


The equivalent volume diameter of a bubble (m)


Height of the bed (m)


Height of the bubble above the distributor (m)


The nozzle area of the distributor (m2)


Maximum stable bubble size (m)


Diameter of the bed (m)


Biomass fraction


Air temperature (°C)


Exhaust gas temperature (°C)

\({\upeta _{\text{c}}}\)

Combustion efficiency

\({\upeta _{{\text{th}}}}\)

Thermal efficiency

\(m_{f}^{ \cdot }\)

Fuel mass flow rate (kg/s)

\(m_{a}^{ \cdot }\)

Air mass flow rate (kg/s)

\(m_{g}^{ \cdot }\)

Flue gas flow rate (kg/s)


Heat capacity of air (kJ/kg K)


Heat capacity of flue gas (kJ/kg K)


Heating value of fuel (kJ/kg)


Flue gas temperature (K)


Ambient temperature (K)


Ash content in 1 kg fuel \(\left( {{\text{k}}{{\text{g}}_{ash}}/{\text{k}}{{\text{g}}_f}} \right)\)


Nitrogen mole fraction


Carbon dioxide mole fraction


Carbon monoxide mole fraction


Oxygen mole fraction


Mass of nitrogen supplied by the combustion air per unit mass of fuel \(~\left( {{\text{k}}{{\text{g}}_{{N_2}}}/{\text{k}}{{\text{g}}_f}} \right)\)

\({\left( {{\raise0.7ex\hbox{$A$} \!\mathord{\left/ {\vphantom {A F}}\right.\kern-0pt}\!\lower0.7ex\hbox{$F$}}} \right)_{th,by{\text{~}}mass}}\)

Theoretical air to fuel ratio by mass \(\left( {{\text{k}}{{\text{g}}_{air}}/{\text{k}}{{\text{g}}_{fuel}}} \right)\)

\(\left( {{\raise0.7ex\hbox{$A$} \!\mathord{\left/ {\vphantom {A F}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$F$}}} \right)_{{act,mass}}\)

Actual air to fuel ratio by mass \(\left( {{\text{k}}{{\text{g}}_{air}}/{\text{k}}{{\text{g}}_{fuel}}} \right)\)


Heat of combustion (KJ)


Enthalpy of formation (KJ/mol)

\({h_i}\left( T \right)\)

Sensible enthalpy of any species at any temperature (kJ/mol)

\({h_i}\left( {{T_o}} \right)\)

Sensible enthalpy of any species at STP (kJ/mol)


Number of moles (mol)


  1. 1.
    Werther, J., Saenger, M., Hartge, E.U., Ogada, T., Siagi, Z.: Combustion of agricultural residues. Prog. Energy Combust. Sci. 26, 1–27 (2000)CrossRefGoogle Scholar
  2. 2.
    Permchart, W., Kouprianov, V.I.: Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels. Bioresour. Technol. 92, 83–91 (2004)CrossRefGoogle Scholar
  3. 3.
    Duan, F., Chyang, C.S., Lin, C.W., Tso, J.: Experimental study on rice husk combustion in a vortexing fluidized-bed with flue gas recirculation (FGR). Bioresour. Technol. 134, 204–211 (2013)CrossRefGoogle Scholar
  4. 4.
    Fang, M., Yang, L., Chen, G., Shi, Z., Luo, Z., Cen, K.: Experimental study on rice husk combustion in a circulating fluidized bed. Fuel Process. Technol. 85, 1273–1282 (2004)CrossRefGoogle Scholar
  5. 5.
    Abdullah, M.Z., Husain, Z., Pong, S.L.Y.: Analysis of cold test results for various biomass fuels. Biomass Bioenergy 24, 487–494 (2003)CrossRefGoogle Scholar
  6. 6.
    Lin, W., Dam-Johansen, K., Frandsen, F.: Agglomeration in bio-fuel fired fluidized bed combustors. Chem. Eng. J. 96, 171–185 (2003)CrossRefGoogle Scholar
  7. 7.
    Brus, E., Öhman, M., Nordin, A.: Mechanisms of bed agglomeration during fluidized-bed combustion of biomass fuels. Energy Fuels 19, 825–832 (2005)CrossRefGoogle Scholar
  8. 8.
    Chirone, R., Miccio, F., Scala, F.: Mechanism and prediction of bed agglomeration during fluidized bed combustion of a biomass fuel: effect of the reactor scale. Chem. Eng. J. 123, 71–80 (2006)CrossRefGoogle Scholar
  9. 9.
    Chaivatamaset, P., Sricharoon, P., Tia, S.: Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed. Appl. Therm. Eng. 31, 2916–2927 (2011)CrossRefGoogle Scholar
  10. 10.
    Sun, Z., Jin, B., Zhang, M., Liu, R., Zhang, Y.: Experimental studies on cotton stalk combustion in a fluidized bed. Energy 33, 1224–1232 (2008)CrossRefGoogle Scholar
  11. 11.
    Han, J., Kim, H., Minami, W., Shimizu, T., Wang, G.: The effect of the particle size of alumina sand on the combustion and emission behavior of cedar pellets in a fluidized bed combustor. Bioresour. Technol. 99, 3782–3786 (2008)CrossRefGoogle Scholar
  12. 12.
    Chyang, C.S., Duan, F., Lin, S.M., Tso, J.: A study on fluidized bed combustion characteristics of corncob in three different combustion modes. Bioresour. Technol. 116, 184–189 (2012)CrossRefGoogle Scholar
  13. 13.
    Armesto, L., Bahillo, A., Veijonen, K., Cabanillas, A., Otero, J.: Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass Bioenergy 23, 171–179 (2002)CrossRefGoogle Scholar
  14. 14.
    Yu, C., Tang, Z., Zeng, L., Chen, C., Gong, B.: Experimental determination of agglomeration tendency in fluidized bed combustion of biomass by measuring slip resistance. Fuel 128, 14–20 (2014)CrossRefGoogle Scholar
  15. 15.
    Kuprianov, V.I., Permchart, W., Janvijitsakul, K.: Fluidized bed combustion of pre-dried Thai bagasse. Fuel Process. Technol. 86, 849–860 (2005)CrossRefGoogle Scholar
  16. 16.
    Wang, C., Wang, F., Yang, Q., Liang, R.: Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenergy 33, 50–56 (2009)CrossRefGoogle Scholar
  17. 17.
    Varol, M., Atimtay, A.T., Bay, B., Olgun, H.: Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochim. Acta 510, 195–201 (2010)CrossRefGoogle Scholar
  18. 18.
    Yang, Z., Zhang, S., Liu, L., Li, X., Chen, H., Yang, H., Wang, X.: Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor. Bioresour. Technol. 110, 595–602 (2012)CrossRefGoogle Scholar
  19. 19.
    Kuprianov, V.I., Arromdee, P.: Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study. Bioresour. Technol. 140, 199–210 (2013)CrossRefGoogle Scholar
  20. 20.
    Youssef, M.A., Wahid, S.S., Mohamed, M.A., Askalany, A.A.: Experimental study on Egyptian biomass combustion in circulating fluidized bed. Appl. Energy 86, 2644–2650 (2009)CrossRefGoogle Scholar
  21. 21.
    Kaewklum, R., Kuprianov, V.I., Janvijitsakul, K.: Influence of fuel moisture and excess air on formation and reduction of CO and NOx in a fluidized-bed combustor fired with Thai rice husk. Asian J. Energy Environ. 8, 97–115 (2007)Google Scholar
  22. 22.
    Sun, Z.-A., Jin, B.-S., Zhang, M.-Y., Liu, R.-P., Zhang, Y.: Experimental study on cotton stalk combustion in a circulating fluidized bed. Appl. Energy 85, 1027–1040 (2008)CrossRefGoogle Scholar
  23. 23.
    Arromdee, P., Kuprianov, V.I.: Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material. Appl. Energy 97, 470–482 (2012)CrossRefGoogle Scholar
  24. 24.
    EL-Sayed, S.A., Mostafa, M.E.: Analysis of grain size statistic and particle size distribution of biomass powders. Waste Biomass Valor. 5, 1005–1018 (2014)CrossRefGoogle Scholar
  25. 25.
    ASTM D1895: Standard test methods for apparent density, bulk factor, and pourability of plastic materials,
  26. 26.
    El-Sayed, S.A., Mostafa, M.E.: Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers. Manag. 85, 165–172 (2014)CrossRefGoogle Scholar
  27. 27.
    Yang, W.-C.: Handbook of Fluidization and Fluid-Particles Systems. Marcel Dekker, Inc (2003)Google Scholar
  28. 28.
    Basu, P.: Combustion and Gasification of Fluidized Beds. Taylor & Francis Group, LLC (2006)Google Scholar
  29. 29.
    Geldart, D.: Gas Fluidization Technology. Wiley, New York (1987)Google Scholar
  30. 30.
    Sami, M., Annamalai, K., Wooldridge, M.: Co-firing of coal and biomass fuel blends. Prog. Energy Combust. Sci. 27, 171–214 (2001)CrossRefGoogle Scholar
  31. 31.
    Madhiyanon, T., Lapirattanakun, A., Sathitruangsak, P., Soponronnarit, S.: A novel cyclonic fluidized-bed combustor (ψ-FBC): combustion and thermal efficiency, temperature distributions, combustion intensity, and emission of pollutants. Combust. Flame 146, 232–245 (2006)CrossRefGoogle Scholar
  32. 32.
    Sirisomboon, K., Kuprianov, V.I., Arromdee, P.: Effects of design features on combustion efficiency and emission performance of a biomass-fuelled fluidized-bed combustor. Chem. Eng. Process. Process Intensif. 49, 270–277 (2010)CrossRefGoogle Scholar
  33. 33.
    Raji, T.O., Oyewola, O.M., Salau, T.A.O.: New features for performance enhancement of experimental model bubbling fluidized bed combustor. Int J. Sci. Eng. Res. 3, 1–10 (2012)Google Scholar
  34. 34.
    Keating, E.L.: Applied Combustion, 2nd edn. CRC Press/Taylor & Francis (2007)Google Scholar
  35. 35.
    Culp, A.W.: Principles of Energy Conversion. McGraw-Hill (1979)Google Scholar
  36. 36.
    Taylor, J.R.: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, California (1997)Google Scholar
  37. 37.
    Coleman, H.W., Steele, W.G.: Experimentation, Validation, and Uncertainty Analysis for Engineers. Wiley (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Power Department, Faculty of EngineeringZagazig UniversityAl-SharkiaEgypt

Personalised recommendations