Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 7, pp 2067–2078 | Cite as

Environmental Impact Study of Bagasse Valorization Routes

  • Saurabh N. Joglekar
  • Akshay P. Tandulje
  • Sachin A. MandavganeEmail author
  • Bhaskar D. Kulkarni
Original Paper

Abstract

India is the world’s second largest producer of sugarcane and a major manufacturer of molasses-derived ethanol. The sugarcane produced is widely used in the production of sugar and 1G ethanol, leaving behind a huge amount of bagasse as waste. However, sugarcane bagasse also has some end-use value, for example, its utilization for the production of methanol, 2G ethanol, and electricity. Although the technologies for the production of these value-added products are well established, it is important to analyze the social, economic, and environmental impacts associated with their production processes. This work compares the environmental impacts of various sugarcane conversion processes on the life cycle basis. The functional unit used is 1 Ton of sugarcane cultivated on field. Four routes were identified for bagasse utilization: (i) conversion to methanol (route 1), (ii) conversion to ethanol via a two-stage dilute acid process (route 2), (iii) conversion to ethanol via an enzymatic process (route 3), and (iv) electricity generation (route 4). The comparison of bagasse management scenarios to obtain various products is made based on midpoint indicators, such as global warming potential, acidification potential, eutrophication potential, ozone depletion potential, and photochemical ozone creation potential. It was observed that methanol production had the highest environmental indicator values. Ethanol production processes and cogeneration process have nearly similar impacts, although it can be said that cogeneration is more eco-friendly.

Keywords

Bagasse valorization LCA Environmental impact Midpoint indicators 

Notes

Acknowledgements

The authors are thankful to SERB-Department of Science and Technology, India for research funding (SB/S3/CE/077/2013). BDK acknowledges the support from Indian National Science Academy.

Supplementary material

12649_2018_198_MOESM1_ESM.docx (393 kb)
Supplementary material 1 (DOCX 392 KB)

References

  1. 1.
    Purohit, P., Dhar, S.: Promoting low carbon transport in India biofuel roadmap for India. (2015)Google Scholar
  2. 2.
    International Potash Institute: IPI Bulletin No. 21. (2013)Google Scholar
  3. 3.
    de Figueiredo, E.B., Panosso, A.R., Romão, R., La Scala Jr., N.: Greenhouse gas emission associated with sugar production in southern Brazil. Carbon Balance Manag. 5, 3 (2010).  https://doi.org/10.1186/1750-0680-5-3 CrossRefGoogle Scholar
  4. 4.
    Soam, S., Kumar, R., Gupta, R.P., Sharma, P.K., Tuli, D.K., Das, B.: Life cycle assessment of fuel ethanol from sugarcane molasses innorthern and western India and its impact on Indian biofuel programme. Energy. 83, 307–315 (2015).  https://doi.org/10.1016/j.energy.2015.02.025 CrossRefGoogle Scholar
  5. 5.
    Gheewala, S.H.: Bagasse: a sustainable energy resource from sugar mills. Asian J. Energy Environ. 7, 356–366 (2006)Google Scholar
  6. 6.
    von Blottnitz, H., Curran, M.A.: A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J. Clean. Prod. 15, 607–619 (2007).  https://doi.org/10.1016/j.jclepro.2006.03.002 CrossRefGoogle Scholar
  7. 7.
    Dias, M.O.S., Junqueira, T.L., Cavalett, O., Cunha, M.P., Jesus, C.D.F., Rossell, C.E.V., Maciel Filho, R., Bonomi, A.: Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour. Technol. 103, 152–161 (2012).  https://doi.org/10.1016/j.biortech.2011.09.120 CrossRefGoogle Scholar
  8. 8.
    Dias, M.O.S., Junqueira, T.L., Cavalett, O., Pavanello, L.G., Cunha, M.P., Jesus, C.D.F., Maciel Filho, R., Bonomi, A.: Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Appl. Energy. 109, 72–78 (2013).  https://doi.org/10.1016/j.apenergy.2013.03.081 CrossRefGoogle Scholar
  9. 9.
    Wang, L., Quiceno, R., Price, C., Malpas, R., Woods, J.: Economic and GHG emissions analyses for sugarcane ethanol in Brazil: looking forward. Renew. Sustain. Energy Rev. 40, 571–582 (2014).  https://doi.org/10.1016/j.rser.2014.07.212 CrossRefGoogle Scholar
  10. 10.
    Pereira, L.G., Chagas, M.F., Dias, M.O.S., Cavalett, O., Bonomi, A.: Life cycle assessment of butanol production in sugarcane biorefineries in Brazil. J. Clean. Prod. 96, 557–568 (2015).  https://doi.org/10.1016/j.jclepro.2014.01.059 CrossRefGoogle Scholar
  11. 11.
    Brehmer, B., Sanders, J.: Assessing the current Brazilian sugarcane industry and directing developments for maximum fossil fuel mitigation for the international petrochemical market. Biofuels Bioprod. Biorefining. 6, 347–360 (2009).  https://doi.org/10.1002/bbb.145 CrossRefGoogle Scholar
  12. 12.
    Kiatkittipong, W., Wongsuchoto, P., Pavasant, P.: Life cycle assessment of bagasse waste management options. Waste Manag. 29, 1628–1633 (2009).  https://doi.org/10.1016/j.wasman.2008.12.006 CrossRefGoogle Scholar
  13. 13.
    Contreras, A.M., Rosa, E., Pérez, M., Van Langenhove, H., Dewulf, J.: Comparative life cycle assessment of four alternatives for using by-products of cane sugar production. J. Clean. Prod. 17, 772–779 (2009).  https://doi.org/10.1016/j.jclepro.2008.12.001 CrossRefGoogle Scholar
  14. 14.
    Renó, M.L.G., Lora, E.E.S., Palacio, J.C.E., Venturini, O.J., Buchgeister, J., Almazan, O.: A LCA (life cycle assessment) of the methanol production from sugarcane bagasse. Energy. 36, 3716–3726 (2011).  https://doi.org/10.1016/j.energy.2010.12.010 CrossRefGoogle Scholar
  15. 15.
    Kadam, K.: Environmental life cycle implications of using bagasse-derived ethanol as a gasoline oxygenate in Mumbai (Bombay). Energy Policy. 30, 79 (2002)CrossRefGoogle Scholar
  16. 16.
    ISO 14040: ISO 14040: environmental management: life cycle assessment—principles and framework. ISO, Geneva (1997)Google Scholar
  17. 17.
    Devi, S.R., Gopal, P.V.S., Prasad, V.S.S.V.: Impact of sugarcane production technologies as perceived by sugarcane farmers in Chittoor district of Andhra Pradesh. Int. J. Ext. Educ. 8, 9–18 (2012)Google Scholar
  18. 18.
    Srivastava, S.K., Kumar, R., Singh, R.P.: Extent of groundwater extraction and irrigation efficiency on farms under different water-market regimes in central Uttar Pradesh. Agric. Econ. Res. Rev. 22, 87–97 (2009)Google Scholar
  19. 19.
    Witayapairot, W., Yossapol, C.: Life cycle assessment of sugar production in Northeastern Thailand. International Conference on Green Sustainable Innovation (2009)Google Scholar
  20. 20.
    Deokar, S.K., Mandavgane, S.A., Kulkarni, B.D.: Adsorptive removal of 2,4-dichlorophenoxyacetic acid from aqueous solution using bagasse fly ash as adsorbent in batch and packed-bed techniques. Clean Technol. Environ. Policy. 18, 1971–1983 (2016).  https://doi.org/10.1007/s10098-016-1124-0 CrossRefGoogle Scholar
  21. 21.
    Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E., Filho, R.M., Bonomi, A.: Second generation ethanol in Brazil: can it compete with electricity production? Bioresour. Technol. 102, 8964–8971 (2011).  https://doi.org/10.1016/j.biortech.2011.06.098 CrossRefGoogle Scholar
  22. 22.
    Rita de Cássia L.B., Rocha G.J., Rodrigues D., Helcio Filho J.I., Maria das Graças A.F., Pessoa A.: Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Bioresour. Technol. 101, 1247–1253 (2010).  https://doi.org/10.1016/j.biortech.2009.09.034 CrossRefGoogle Scholar
  23. 23.
    Furlan, F.F., Filho, R.T., Pinto, F.H., Costa, C.B., Cruz, A.J., Giordano, R.L., Giordano, R.C.: Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible? Biotechnol. Biofuels. 6, 142 (2013).  https://doi.org/10.1186/1754-6834-6-142 CrossRefGoogle Scholar
  24. 24.
    Olguín, E.J., Doelel, H.W., Mercado, G.: Resource recovery through recycling of sugar processing by-products and residuals. Resour. Conserv. Recycl. 15, 85–94 (1995).  https://doi.org/10.1016/0921-3449(95)00028-H CrossRefGoogle Scholar
  25. 25.
    Buckeridge, M.: Carbon sequestration, sugarcane and the cinderella effect climate change in Brazil, https://mudancasclimaticasnobrasil.wordpress.com/2009/05/11/sequestro-de-carbono-cana-de-acucar-e-o-efetio-cinderela/
  26. 26.
    Madurwar, M.V., Mandavgane, S.A., Ralegaonkar, R.V.: Use of sugarcane bagasse ash as brick material. Curr. Sci. 107, 1044–1051 (2014).  https://doi.org/10.1046/j.1365-2222.2000.00820.x Google Scholar
  27. 27.
    Auer, S., Haulio, M., Lekawska, L., Sonnleitner, M.: Ethanol vs. Biogas Used as Car Fuels. Royal Institute of Technology: Stockholm (2006)Google Scholar
  28. 28.
    González-García, S., Moreira, M.T., Feijoo, G.: Comparative environmental performance of lignocellulosic ethanol from different feedstocks. Renew. Sustain. Energy Rev. 14, 2077–2085 (2010).  https://doi.org/10.1016/j.rser.2010.03.035 CrossRefGoogle Scholar
  29. 29.
    Cherubini, F., Jungmeier, G.: LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int. J. Life Cycle Assess. 15, 53–66 (2010).  https://doi.org/10.1007/s11367-009-0124-2 CrossRefGoogle Scholar
  30. 30.
    IPCC: Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel. IPCC, Cambridge (2007)Google Scholar
  31. 31.
    Mara, U.T., Syuhaida, S., Mohamed, B.: Life cycle assessment of carbon dioxide emissions in gasoline process in Malaysia Master of Science, (2015)Google Scholar
  32. 32.
    GHK bio intelligence service: environmental impacts characterisation factors analysed and characterisation factorsGoogle Scholar
  33. 33.
    Ravishankara, A., Daniel, J., Portmann, R.W.: Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st Century. Science 326, 123 (2009)CrossRefGoogle Scholar
  34. 34.
    Pre sustainability: SimaPro database manual. (2014)Google Scholar
  35. 35.
    Schmidt, J.H., Holm, P., Merrild, A., Christensen, P.: Life cycle assessment of the waste hierarchy: a Danish case study on waste paper. Waste Manag. 27, 1519–1530 (2007).  https://doi.org/10.1016/j.wasman.2006.09.004 CrossRefGoogle Scholar
  36. 36.
    Ramjeawon, T.: Life cycle assessment of cane-sugar on the island of mauritius. Int. J. Life Cycle Assess. 9, 254–260 (2004).  https://doi.org/10.1007/BF02978601 CrossRefGoogle Scholar
  37. 37.
    Ometto, A.R., Hauschild, M.Z., Roma, W.N.L.: Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int. J. Life Cycle Assess. 14, 236–247 (2009).  https://doi.org/10.1007/s11367-009-0065-9 CrossRefGoogle Scholar
  38. 38.
    Chinnawornrungsee, R., Malakul, P., Mungcharoen, T.: Life cycle energy and environmental analysis study of a model biorefinery in Thailand. Chem. Eng. Trans. 32, 439–444 (2013).  https://doi.org/10.3303/CET1332074 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Saurabh N. Joglekar
    • 1
  • Akshay P. Tandulje
    • 1
  • Sachin A. Mandavgane
    • 1
    Email author
  • Bhaskar D. Kulkarni
    • 2
  1. 1.Chemical Engineering DepartmentVisvesvaraya National Institute of TechnologyNagpurIndia
  2. 2.National Chemical LaboratoryPuneIndia

Personalised recommendations