Advertisement

Enhanced Methane Production from Dry Leaflets of Algerian Date Palm (Phoenix dactylifera L.) Hmira Cultivar, by Alkaline Pretreatment

  • Mohammed DjaafriEmail author
  • Slimane Kalloum
  • Kamel Kaidi
  • Fethya Salem
  • Soumia Balla
  • Djelloul Meslem
  • Abdelkader Iddou
Original Paper
  • 17 Downloads

Abstract

This article discusses the biochemical methane potential (BMP) test of the alkali pretreated “dry leaflets of Algerian date palm (Phoenix dactylifera L.) Hmira cultivar”. The anaerobic digestion (AD) experiments are performed in 4 digesters at 37 °C for 50 days. Digesters with one liter capacity for each one and a working volume of 600 mL are prepared with 10 g volatile solids (VS) of the substrate. A 6%, 12% and 18% weight/weight (w/w) NaOH (based on substrate VS) are used for alkaline pretreatment. During the performed experiments, the CH4 volume is monitored in order to evaluate the alkaline pretreatment influences. The obtained results show that a 12% NaOH is the best concentration, with a 135 mL CH4/gVS that represents an increase of methane production to 133.55% compared to the control test. A biodegradability (BD) improvement of 48.64% through the chemical oxygen demand (COD) removal is recorded with the same concentration of 12% NaOH. The technical digestion times (T80) of 22 and 32 days are recorded for both, the 12% NaOH concentration and the control test respectively, this clearly shows a shortening of 36.78% in T80. Finally, the results obtained in this experimental study show that, based on the increase of pretreatment range of the NaOH concentration (6%, 12% and 18%) before AD of the “dry leaflets of Algerian date palm (Phoenix dactylifera L.) Hmira cultivar”, an improvement of methane yield and biodegradability in shortening digestion time were registered.

Keywords

Dry date palm leaflets High alkaline pretreatment range Hmira cultivar Lignin content Methane enhancement Phoenix dactylifera L. 

Notes

Acknowledgements

The authors would like to thank Mr. Hamid Kaddami and Ms. Karima Ben Hamou for conducting the lignocellulosic components analysis. The authors would also like to thank Dr. Mohamed Omari, Dr. Necaibia Ammar, Dr. Salah Lachtar and Dr. Mediani Mohamed for proof-reading this document. We also thank the URERMS bioconversion team (CDER, Adrar, Algeria).

References

  1. 1.
    Abid, W., Magdich, S., Ben, I., Khaled, M.: Date Palm wastes co-composted product: an efficient substrate for tomato (Solanum lycopercicum L.) seedling production. Waste Biomass Valoriz. (2016).  https://doi.org/10.1007/s12649-016-9767-y
  2. 2.
    Bendahou, A., Dufresne, A., Kaddami, H., Habibi, Y.: Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L. Carbohydr. Polym. 68, 601–608 (2007).  https://doi.org/10.1016/j.carbpol.2006.10.016 CrossRefGoogle Scholar
  3. 3.
    Mallaki, M., Fatehi, R.: Design of a biomass power plant for burning date palm waste to cogenerate electricity and distilled water. Renew. Energy. 63, 286–291 (2014).  https://doi.org/10.1016/j.renene.2013.09.036 CrossRefGoogle Scholar
  4. 4.
    Bouguedoura, N., Bennaceur, M., Babahani, S., Benziouche, S.E.: Date Palm Status and Perspective in Algeria. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds.) Date Palm Genetic Resources and Utilization, pp. 125–168. Springer, Dordrecht Heidelberg New York (2015)Google Scholar
  5. 5.
    Lund, P.D., Byrne, J., Berndes, G., Vasalos, I.A.: Advances in Bioenergy: The Sustainability Challenge. Wiley, Hoboken (2015)Google Scholar
  6. 6.
    Chen, X., Gu, Y., Zhou, X., Zhang, Y.: Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment. Bioresour. Technol. 164, 78–85 (2014).  https://doi.org/10.1016/j.biortech.2014.04.070 CrossRefGoogle Scholar
  7. 7.
    Kamdem, I., Hiligsmann, S., Vanderghem, C., Jacquet, N., Tiappi, F.M., Richel, A., Jacques, P., Thonart, P.: Enhanced biogas production during anaerobic digestion of steam-pretreated lignocellulosic biomass from Williams Cavendish banana plants. Waste Biomass Valoriz. 9, 175–185 (2018).  https://doi.org/10.1007/s12649-016-9788-6 CrossRefGoogle Scholar
  8. 8.
    Aslam, M., Yang, P., Lee, P., Kim, J.: Novel staged anaerobic fluidized bed ceramic membrane bioreactor: energy reduction, fouling control and microbial characterization. J. Memb. Sci. 553, 200–208 (2018).  https://doi.org/10.1016/j.memsci.2018.02.038 CrossRefGoogle Scholar
  9. 9.
    Azbar, G.ÇN.: Energy recovery from conventional biogas digester effluent with a novel bioreactor configuration. Waste Biomass Valorization (2017).  https://doi.org/10.1007/s12649-016-9827-3 Google Scholar
  10. 10.
    Chufo, A., Yuan, H., Zou, D., Pang, Y., Li, X.: Biomethane production and physicochemical characterization of anaerobically digested teff (Eragrostis tef) straw pretreated by sodium hydroxide. Bioresour. Technol. 181, 214–219 (2015).  https://doi.org/10.1016/j.biortech.2015.01.054 CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., Chen, X., Gu, Y., Zhou, X.: A physicochemical method for increasing methane production from rice straw: Extrusion combined with alkali pretreatment. Appl. Energy. 160, 39–48 (2015).  https://doi.org/10.1016/j.apenergy.2015.09.011 CrossRefGoogle Scholar
  12. 12.
    Zhang, C., Li, J., Liu, C., Liu, X., Wang, J., Li, S., Fan, G., Zhang, L.: Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresour. Technol. 149, 353–358 (2013).  https://doi.org/10.1016/j.biortech.2013.09.070 CrossRefGoogle Scholar
  13. 13.
    Sambusiti, C., Ficara, E., Malpei, F., Steyer, J.P., Carrère, H.: Benefit of sodium hydroxide pretreatment of ensiled sorghum forage on the anaerobic reactor stability and methane production. Bioresour. Technol. 144, 149–155 (2013).  https://doi.org/10.1016/j.biortech.2013.06.095 CrossRefGoogle Scholar
  14. 14.
    Taherdanak, M., Zilouei, H.: Improving biogas production from wheat plant using alkaline pretreatment. Fuel. 115, 714–719 (2014).  https://doi.org/10.1016/j.fuel.2013.07.094 CrossRefGoogle Scholar
  15. 15.
    Li, H., Li, C., Liu, W., Zou, S.: Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresour. Technol. 123, 189–194 (2012).  https://doi.org/10.1016/j.biortech.2012.08.017 CrossRefGoogle Scholar
  16. 16.
    Torres, M.L., Llorens, E.M.D.C.E.: Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag. 28, 2229–2234 (2008).  https://doi.org/10.1016/j.wasman.2007.10.006 CrossRefGoogle Scholar
  17. 17.
    Sambusiti, C., Ficara, E., Malpei, F., Steyer, J.P., Carrère, H.: Influence of alkaline pre-treatment conditions on structural features and methane production from ensiled sorghum forage. Chem. Eng. J. 211212, 488–492 (2012).  https://doi.org/10.1016/j.cej.2012.09.103 CrossRefGoogle Scholar
  18. 18.
    Dai, B.L., Guo, X.J., Yuan, D.H., Xu, J.: Comparison of different pretreatments of rice straw substrate to improve biogas production. Waste Biomass Valoriz. 9, 1503–1512 (2018).  https://doi.org/10.1007/s12649-017-9950-9 CrossRefGoogle Scholar
  19. 19.
    Sambusiti, C., Ficara, E., Malpei, F., Steyer, J.P., Carreère., H.: Effect of particle size on methane production of raw and alkaline pre-treated ensiled sorghum forage. Waste Biomass Valoriz. (2013).  https://doi.org/10.1007/s12649-013-9199-x Google Scholar
  20. 20.
    Shen, J., Zhao, C., Liu, G., Chen, C.: Enhancing the performance on anaerobic digestion of vinegar residue by sodium hydroxide pretreatment. Waste Biomass Valoriz. 8, 1119–1126 (2017).  https://doi.org/10.1007/s12649-016-9666-2 CrossRefGoogle Scholar
  21. 21.
    Wang, D., Ai, P., Yu, L., Tan, Z., Zhang, Y.: ScienceDirect comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation. Biosyst. Eng. 132, 47–55 (2015).  https://doi.org/10.1016/j.biosystemseng.2015.02.007 CrossRefGoogle Scholar
  22. 22.
    Buffiere, P., Loisel, D., Bernet, N., Delgenes, J.: Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 53, 233–241 (2006).  https://doi.org/10.2166/wst.2006.254 CrossRefGoogle Scholar
  23. 23.
    Saadaoui, N., Rouilly, A., Fares, K., Rigal, L.: Characterization of date palm lignocellulosic by-products and self-bonded composite materials obtained thereof. Mater. Des. 50, 302–308 (2013).  https://doi.org/10.1016/j.matdes.2013.03.011 CrossRefGoogle Scholar
  24. 24.
    Sbiai, A., Kaddami, H., Sautereau, H., Maazouz, A., Fleury, E.: TEMPO-mediated oxidation of lignocellulosic fibers from date palm leaves. Carbohydr. Polym. 86, 1445–1450 (2011).  https://doi.org/10.1016/j.carbpol.2011.06.005 CrossRefGoogle Scholar
  25. 25.
    Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., Lier, J.B., Van: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59(5), 927–934 (2009).  https://doi.org/10.2166/wst.2009.040 CrossRefGoogle Scholar
  26. 26.
    AWWA-APHA-WEF ed: Standard methods for the examination, of water and wastewater. Washington (1999)Google Scholar
  27. 27.
    Ergüder, T.H., Güven, E., Demirer, G.N.: Anaerobic treatment of olive mill wastes in batch reactors. Process Biochem. 36, 243–248 (2000).  https://doi.org/10.1016/S0032-9592(00)00205-3 CrossRefGoogle Scholar
  28. 28.
    Kalloum, S., Bouabdessalem, H., Touzi, A.: Biogas production from the sludge of the municipal wastewater treatment plant of Adrar city (southwest of Algeria). Biomass Bioenergy 35, 2554–2560 (2011).  https://doi.org/10.1016/j.biombioe.2011.02.012 CrossRefGoogle Scholar
  29. 29.
    Yunqin, L., Dehan, W., Shaoquan, W., Chunmin, W.: Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. J. Hazard. Mater. 170, 366–373 (2009).  https://doi.org/10.1016/j.jhazmat.2009.04.086 CrossRefGoogle Scholar
  30. 30.
    Rosemarie, D., Albertson, O.E.: Volatile acids by direct titration. Water Pollut. Control Fed. 33, 356–365 (1961).  https://doi.org/10.1073/pnas.0807060105 Google Scholar
  31. 31.
    Yang, G., Anderson, G.K.: Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Water Environ. Res. 64, 53–59 (1992).  https://doi.org/10.2175/WER.64.1.8 CrossRefGoogle Scholar
  32. 32.
    Nani Abdelhafid: Etude de quelques effets métaboliques du millet pennisetum glaucum ches des rats diabétiques (2011)Google Scholar
  33. 33.
    El may, Y., Jeguirim, M., Dorge, S., Trouvé, G., Said, R.: Experimental investigation on gaseous emissions from the combustion of date palm residues in laboratory scale furnace. Bioresour. Technol. 131, 94–100 (2013).  https://doi.org/10.1016/j.biortech.2012.12.120 CrossRefGoogle Scholar
  34. 34.
    Bousdira, K., Nouri, L., Legrand, J.: Chemical characterization of phoenicicole biomass fuel in algerian oasis: Deglet Nour and Ghars cultivars case. Energy and Fuels. 28, 7483–7493 (2014).  https://doi.org/10.1021/ef501522n CrossRefGoogle Scholar
  35. 35.
    Qiao, W., Yan, X., Ye, J., Sun, Y., Wang, W., Zhang, Z.: Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew. Energy 36, 3313–3318 (2011).  https://doi.org/10.1016/j.renene.2011.05.002 CrossRefGoogle Scholar
  36. 36.
    Tsapekos, P., Kougias, P.G., Frison, A., Raga, R., Angelidaki, I.: Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. Bioresour. Technol. 216, 545–552 (2016).  https://doi.org/10.1016/j.biortech.2016.05.117 CrossRefGoogle Scholar
  37. 37.
    Luque, R., Lin, C.S.K., Wilson, K., Clark, J.: Handbook of Biofuels Production Processes and Technologies. Elsevier, New York (2016)Google Scholar
  38. 38.
    Mogni, A., Pontalier, P.Y., Albet, J.: Fractionnement des complexes lignine-polyphénols polysaccharides issus de différentes biomasses lignocellulosiques par extrusion bi-vis et séparation chromatographique. Thèse de Doctorat de l'université de Toulouse. Institut National Polytechnique de Toulouse (INP Toulouse), France (2015)Google Scholar
  39. 39.
    Neves, L., Oliveira, R., Alves, M.M.: Anaerobic co-digestion of coffee waste and sewage sludge. Waste Manage. 26, 176–181 (2006).  https://doi.org/10.1016/j.wasman.2004.12.022 CrossRefGoogle Scholar
  40. 40.
    Chandra, R., Takeuchi, H., Hasegawa, T., Kumar, R.: Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy. 43, 273–282 (2012).  https://doi.org/10.1016/j.energy.2012.04.029 CrossRefGoogle Scholar
  41. 41.
    AlMaadeed, M.a., Kahraman, R., Khanam, P.N., Al-Maadeed, S.: Characterization of untreated and treated male and female date palm leaves. Mater. Des. 43, 526–531 (2013).  https://doi.org/10.1016/j.matdes.2012.07.028 CrossRefGoogle Scholar
  42. 42.
    Zhu, J., Wan, C., Li, Y.: Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour. Technol. 101, 7523–7528 (2010).  https://doi.org/10.1016/j.biortech.2010.04.060 CrossRefGoogle Scholar
  43. 43.
    Yang, D., Pang, Y., Yuan, H., Chen, S., Ma, J., Yu, L., Li, X.: Enhancing biogas production from anaerobically digested wheat straw through ammonia pretreatment. Chinese J. Chem. Eng. 22, 576–582 (2014).  https://doi.org/10.1016/S1004-9541(14)60075-6 CrossRefGoogle Scholar
  44. 44.
    Zheng, M., Li, X., Li, L., Yang, X., He, Y.: Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour. Technol. 100, 5140–5145 (2009).  https://doi.org/10.1016/j.biortech.2009.05.045 CrossRefGoogle Scholar
  45. 45.
    Khatri, S., Wu, S., Kizito, S., Zhang, W., Li, J., Dong, R.: Synergistic effect of alkaline pretreatment and Fe dosing on batch anaerobic digestion of maize straw. Appl. Energy. 158, 55–64 (2015).  https://doi.org/10.1016/j.apenergy.2015.08.045 CrossRefGoogle Scholar
  46. 46.
    Krishna, G., Chen, L.: Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 48, 492–502 (2016).  https://doi.org/10.1016/j.wasman.2015.10.021 CrossRefGoogle Scholar
  47. 47.
    Yao, Y., He, M., Ren, Y., Ma, L., Luo, Y., Sheng, H., Xiang, Y., Zhang, H., Li, Q., An, L.: Bioresource technology anaerobic digestion of poplar processing residues for methane production after alkaline treatment. Bioresour. Technol. 134, 347–352 (2013).  https://doi.org/10.1016/j.biortech.2012.12.160 CrossRefGoogle Scholar
  48. 48.
    Ismail;, Z.Z., Talib, A.R.: Assessment of anaerobic co-digestion of agro wastes for biogas recovery: a bench scale application to date palm wastes. Int. J. Energy Environ. 5, 591–600 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centre de Développement des Energies RenouvelablesUnité de Recherche en Energies Renouvelables en Milieu Saharien, URERMS, CDERAdrarAlgeria
  2. 2.Laboratoire de Valorisation des Matériaux, Département Génie des Procédés, Faculté des Sciences et de la TechnologieUniversité Abdelhamid Ibn Badis-MostaganemMostaganemAlgeria
  3. 3.Laboratory of Energy, Environment and Information SystemAdrar UniversityAdrarAlgeria

Personalised recommendations