Advertisement

Bioconversion of Agro-Industrial Waste to Value-Added Product Lycopene by Photosynthetic Bacterium Rhodopseudomonas faecalis and Its Carotenoid Composition

  • Sirada Patthawaro
  • Khomsorn Lomthaisong
  • Chewapat SaejungEmail author
Original Paper
  • 25 Downloads

Abstract

Agro-industrial based industries have produced large amounts of residues. The recycling of agro-industrial wastes to produce value-added products is a promising aspect. The photosynthetic bacterium Rhodopseudomonas faecalis PA2 is an attractive source for carotenoid production because of its high carotenoid productivity. However, carotenoid composition of this bacterium remains unclear. In this study, agro-industrial wastes including soybean meal, coconut meal and cassava meal were optimised as sole substrate to produce carotenoids. Biomass and carotenoid productions were highest in soybean meal medium containing 50% soybean meal. The optimal condition was used to produce this bacterium in a photo-bioreactor and investigate carotenoid composition by using a high performance liquid chromatography (HPLC) and absorption spectral characteristics. The saponified extract consisted of lycopene, 1,2-dihydrolycopene, cis-1,2-dihydrolycopene and 1,2-dihydro-3,4-didehydrolycopene. To our knowledge this is the first study to investigate carotenoid composition of R. faecalis and the bioactive compounds produced by photosynthetic bacteria grown in soybean meal without additional nutrients was proposed. The utilization of this bacterium as a lycopene source with cost competitiveness will be further studied.

Graphical Abstract

Keywords

Photosynthetic bacteria Rhodopseudomonas faecalis Lycopene Carotenoids Agro-industrial waste 

Notes

Acknowledgements

The first author is thankful to the research capability enhancement program through graduate student scholarship, Faculty of Science, Khon Kaen University, Thailand for the financial support. The Thailand Research Fund (TRF) and the Office of the Higher Education Commission (Grant No. MRG6080233) and Faculty of Science, Khon Kaen University are gratefully acknowledged.

References

  1. 1.
    Liang, M.H., Zhu, J., Jiang, J.G.: Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit Rev. Food. Sci. Nutr. 13, 1–20 (2017)Google Scholar
  2. 2.
    Grand View Research.: Carotenoids market analysis by source (natural, synthetic), by product (beta-carotene, lutein, lycopene, astaxanthin, zeaxanthin, canthaxanthin), by application (food, supplements, feed, pharmaceuticals, cosmetics), and segment forecasts, 2018–2025. https://www.grandviewresearch.com/industry-analysis/carotenoids-market (2016). Accessed 31 Jan 2018
  3. 3.
    Schweiggert, R.M., Carle, R.: Carotenoid production by bacteria, microalgae, and fungi. In: Kaczor, A., Baranska, M. (eds.) Carotenoids: Nutrition, Analysis and Technology, p. 217. Wiley, West Sussex (2016)CrossRefGoogle Scholar
  4. 4.
    Panis, G., Carreon, J.R.: Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res. 18, 175–190 (2016)CrossRefGoogle Scholar
  5. 5.
    Wang, G.S., Grammel, H., Abou-Aisha, K., Sagesser, R., Ghosh, R.: High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl. Environ. Microbiol. 78, 7205–7215 (2012)CrossRefGoogle Scholar
  6. 6.
    Zhu, F., Lu, L., Fu, S., Zhong, X., Hu, M., Deng, Z., Liu, T.: Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochem. 50, 341–346 (2015)CrossRefGoogle Scholar
  7. 7.
    Xie, W., Ye, L., Lv, X., Xu, H., Yu, H.: Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab. Eng. 28, 8–18 (2015)CrossRefGoogle Scholar
  8. 8.
    Matthaus, F., Ketelhot, M., Gatter, M., Barth, G.: Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 80, 1660–1669 (2014)CrossRefGoogle Scholar
  9. 9.
    Ma, T., Deng, Z., Liu, T.: Microbial production strategies and applications of lycopene and other terpenoids. World J. Microbiol. Biotechnol. 32, 15 (2017)CrossRefGoogle Scholar
  10. 10.
    Chen, C.Y., Jesisca, B., Hsieh, C., Lee, C.J., Chang, C.H., Chang, J.S.: Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresour. Technol. 200, 500–505 (2016)CrossRefGoogle Scholar
  11. 11.
    Ambati, R.R., Gogisetty, D., Aswathnarayana, G.R., Ravi, S., Bikkina, P.N., Su, Y., Lei, B.: Botryococcus as an alternative source of carotenoids and its possible applications—an overview. Crit. Rev. Biotechnol. 38, 541–558 (2018)CrossRefGoogle Scholar
  12. 12.
    Pribyl, P., Cepak, V., Kastanek, P., Zachleder, V.: Elevated production of carotenoids by new isolate of Scenedesmus sp. Algal Res. 11, 22–27 (2015)CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Ibrahim, I.M., Wosu, C.I., Ben-Amotz, A., Harvey, P.J.: Potential of new isolates of Dunaliella salina for natural β-carotene production. Biology 7, 14 (2018)CrossRefGoogle Scholar
  14. 14.
    Dias, C., Sousa, S., Caldeira, J., Reis, A., Silva, T.L.: New dual-stage pH control fed-batch cultivation strategy for the improvement of lipids and carotenoids production by the red yeast Rhodosporidium toruloides NCYC 921. Bioresour. Technol. 189, 309–318 (2015)CrossRefGoogle Scholar
  15. 15.
    Millao, S., Uquiche, E.: Extraction of oil and carotenoids from pelletized microalgae using supercritical carbon dioxide. J. Supercrit. Fluids 116, 223–231 (2016)CrossRefGoogle Scholar
  16. 16.
    Joshi, C., Singhal, R.S.: Zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 in a lab-scale bubble column reactor: artificial intelligence modelling for determination of optimal operational parameters and energy requirements. Korean J. Chem. Eng. 35, 195–203 (2018)CrossRefGoogle Scholar
  17. 17.
    Shahina, M., Hameed, A., Lin, S.Y., Lee, R.J., Lee, M.R., Young, C.C.: Gramella planctonica sp. nov., a zeaxanthin-producing bacterium isolated from surface seawater, and emended descriptions of Gramella aestuarii and Gramella echinicola. Antonie Van Leeuwenhoek 105, 771–779 (2014)CrossRefGoogle Scholar
  18. 18.
    Singh, D., Barrow, C.J., Mathur, A.S., Tuli, D.K., Puri, M.: Optimization of zeaxanthin and β-carotene extraction from Chlorella saccharophila isolated from New Zealand marine waters. Biocatal. Agric. Biotechnol. 4, 166–173 (2015)CrossRefGoogle Scholar
  19. 19.
    Takaichi, S.: Distribution and biosynthesis of carotenoids. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds.) The Purple Phototrophic Bacteria, pp. 97–117. Springer, New York (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, C.C., Ding, S., Chiu, K.H., Liu, W.S., Lin, T.J., Wen, Z.H.: Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source. Food Nutr. Res. 31, 60 (2016)Google Scholar
  21. 21.
    Bao, Y., Yan, H., Liu, L., Xu, Q.: Efficient extraction of lycopene from Rhodopseudomonas palustris with n-hexane and methanol after alkaline wash. Chem. Eng. Technol. 33, 1665–1671 (2010)CrossRefGoogle Scholar
  22. 22.
    Li, Z., Kong, L., Hui, B., Shang, X., Gao, L., Luan, N., Zhuang, X., Wang, D., Bai, Z.: Identification and antioxidant activity of carotenoids from superfine powder of Rhodobacter sphaeroides. Emir. J. Food Agric. 29, 833–845 (2017)CrossRefGoogle Scholar
  23. 23.
    Saejung, C., Apaiwong, P.: Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotechnol. Bioprocess Eng. 20, 701–707 (2015)CrossRefGoogle Scholar
  24. 24.
    Saejung, C., Ampornpat, W.: Production and nutritional performance of carotenoid-producing photosynthetic bacterium Rhodopseudomonas feacalis PA2 grown in domestic wastewater intended for animal feed production. Waste Biomass Valoriz. (2017)  https://doi.org/10.1007/s12649-017-0070-3 Google Scholar
  25. 25.
    Zhang, D., Yang, H., Huang, Z., Zhang, W., Liu, S.J.: Rhodopseudomonas faecalis sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces. Int. J. Syst. Evol. Microbiol. 52, 2055–2060 (2002)Google Scholar
  26. 26.
    Jahan, N., Shahid, F., Aman, A., Mujahid, T.Y., Ali, S., Qader, U.: Utilization of agro waste pectin for the production of industrially important polygalacturonase. Heliyon (2017)  https://doi.org/10.1016/j.heliyon.2017.e00330 Google Scholar
  27. 27.
    Mukherjee, R., Chakraborty, R., Dutta, A.: Role of fermentation in improving nutritional quality of soybean meal—a review. Asian-Australas. J. Anim. Sci. 29, 1523–1529 (2016)CrossRefGoogle Scholar
  28. 28.
    Global Agricultural Information Network Report.: Thailand oilseeds and products annual, USDA Foreign Agricultural Service. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Oilseeds%20and%20Products%20Annual_Bangkok_Thailand_3-21-2018.pdf (2017). Accessed 24 July 2018
  29. 29.
    Piyachomkwan, K., Tanticharoen, M.: Cassava industry in Thailand: prospects. J. R. Inst. Thailand 3, 160–170 (2011)Google Scholar
  30. 30.
    Morgan, N.K., Choct, M.: Cassava: Nutrient composition and nutritive value in poultry diets. Anim. Nutr. 2, 253–261 (2016)CrossRefGoogle Scholar
  31. 31.
    Khuwijitjaru, P., Watsanit, K., Adachi, S.: Carbohydrate content and composition of product from subcritical water treatment of coconut meal. J. Ind. Eng. Chem. 18, 225–229 (2012)CrossRefGoogle Scholar
  32. 32.
    Gupta, P.L., Choi, H.-J., Pawar, R.R., Jung, S.P., Lee, S.-M.: Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source. J. Environ. Manag. 184, 585–595 (2016)CrossRefGoogle Scholar
  33. 33.
    Young, A.J., Britton, G.: Methods for the isolation and analysis of carotenoids. In: Britton, G., Young, A.J. (eds.) Carotenoids in Photosynthesis, pp. 409–457. Chapman & Hall, London (1993)CrossRefGoogle Scholar
  34. 34.
    Gupta, P., Sreelakshmi, Y., Sharma, R.: A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods (2015).  https://doi.org/10.1186/s13007-015-0051-0 Google Scholar
  35. 35.
    DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  36. 36.
    Hirayama, O.: Lipids and lipoprotein complex in photosynthetic tissue: 4 lipid and pigments of photosynthetic bacteria. Agric. Biol. Chem. 32, 34–41 (1968)Google Scholar
  37. 37.
    Association of Official Analytical Chemists (AOAC): Official Methods of Analysis. AOAC International, Gaithersburg (2016)Google Scholar
  38. 38.
    Department of Medical Sciences and National Bureau of Agriculture Commodity and Food Standards: Compendium of Methods for Food Analysis. Department of Medical Sciences, Bangkok (2003)Google Scholar
  39. 39.
    American Public Health Association (APHA): Standard Methods for Examination of Water and Wastewater. APHA, AWWA, WEF, Washington DC (2017)Google Scholar
  40. 40.
    Yadav, K.S., Prabha, R.: Effect of pH and temperature on carotenoid pigments produced from Rhodotorula minuta. Int. J. Fermented. Foods 3, 105–113 (2014)CrossRefGoogle Scholar
  41. 41.
    Chen, W., Duizer, L., Corredig, M., Goff, H.D.: Addition of soluble soybean polysaccharides to dairy products as a source of dietary fiber. J. Food Sci. 75, 478–484 (2010)CrossRefGoogle Scholar
  42. 42.
    Tajik, S., Maghsoudlou, Y., Khodaiyan, F., Jafari, S.M., Ghasemlou, M., Aalami, M.: Soluble soybean polysaccharide: a new carbohydrate to make a biodegradable film for sustainable green packaging. Carbohydr. Polym. 97, 817–824 (2013)CrossRefGoogle Scholar
  43. 43.
    Jia, X., Chen, M., Wan, J., Su, H., He, C.: Review on the extraction, characterization and application of soybean polysaccharide. RSC. Adv. 5, 73525–73534 (2015)CrossRefGoogle Scholar
  44. 44.
    Li, S., Zhu, D., Li, K., Yang, Y., Lei, Z., Zhang, Z.: Soybean curd residue: composition, utilization, and related limiting factors. ISRN Ind. Eng. (2013).  https://doi.org/10.1155/2013/423590 Google Scholar
  45. 45.
    Cui, S.W.: Polysaccharide Gums from Agricultural Products: Processing, Structures and Functionality. Technomic Publishing Co. Inc., Pennsylvania (2000)Google Scholar
  46. 46.
    Rodsamrana, P., Sothornvitb, R.: Physicochemical and functional properties of protein concentrate from byproduct of coconut processing. Food Chem. 241, 364–371 (2018)CrossRefGoogle Scholar
  47. 47.
    Ng, S.P., Tan, C.P., Lai, O.M., Long, K., Mirhosseini, H.: Extraction and characterization of dietary fiber from coconut residue. J. Food Agric. Environ. 8, 172–177 (2010)Google Scholar
  48. 48.
    Olugbemi, T.S., Mutayoba, S.K., Lekule, F.P.: Effect of Moringa (Moringa oleifera) inclusion in cassava based diets fed to broiler chickens. Int. J. Poult. Sci. 9, 363–367 (2010)CrossRefGoogle Scholar
  49. 49.
    Nnadi, P.A., Omeke, B.C., Okpe, G.C.: Growth and reproductive performances of weaner pigs fed maize replaced cassava diet. Anim. Res. Int. 70, 1257–1263 (2010)Google Scholar
  50. 50.
    Ngiki, Y.U., Igwebuike, J.U., Moruppa, S.M.: Utilisation of cassava products for poultry feeding: a review. Int. J. Sci. Technol. 2, 48–59 (2014)Google Scholar
  51. 51.
    Reed, M.C., Lieb, A., Nijhout, F.H.: The biological significance of substrate inhibition: a mechanism with diverse function. Bioessays 32, 422–429 (2010)CrossRefGoogle Scholar
  52. 52.
    Karsli, M.A., Russell, J.R.: Effects of source and concentrations of nitrogen and carbohydrate on ruminal microbial protein synthesis. Turk. J. Vet. Anim. Sci. 26, 201–207 (2002)Google Scholar
  53. 53.
    Stuart, L.S.: Effect of protein concentration and cysteine on growth of halophilic bacteria. J. Agric. Res. 61, 267–275 (1940)Google Scholar
  54. 54.
    Kram, K.E., Finkel, S.E.: Culture volume and vessel affect long-term survival, mutation frequency, and oxidative stress of Escherichia coli. Appl. Environ. Microbiol. 80, 1732–1738 (2014)CrossRefGoogle Scholar
  55. 55.
    Saejung, C., Puensungnern, L.: Evaluation of molasses-based medium as a low cost medium for carotenoids and fatty acid production by photosynthetic bacteria. Waste Biomass Valoriz. (2018).  https://doi.org/10.1007/s12649-018-0379-6 Google Scholar
  56. 56.
    Saejung, C., Salasook, P.: Recycling of sugar industry wastewater for single-cell protein production with supplemental carotenoids. Environ. Technol. (2018).  https://doi.org/10.1080/09593330.2018.1491633 Google Scholar
  57. 57.
    Eroglu, E., Gunduz, U., Yucel, M., Eroglu, I.: Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock. ‎Int. J. Hydrog. Energy 35, 5293–5300 (2010)CrossRefGoogle Scholar
  58. 58.
    Liu, S., Zhang, G., Li, X., Wu, P., Zhang, J.: Enhancement of Rhodobacter sphaeroides growth and carotenoid production through biostimulation. J. Environ. Sci. 33, 21–28 (2015)CrossRefGoogle Scholar
  59. 59.
    Wang, H., Yang, A., Zhang, G., Ma, B., Meng, F., Peng, M., Wang, H.: Enhancement of carotenoid and bacteriochlorophyll by high salinity stress in photosynthetic bacteria. Int. Biodeterior. Biodegrad. 121, 91–96 (2017)CrossRefGoogle Scholar
  60. 60.
    Eidem, A., Buchecker, R., Kjosen, H., Liaaen, J.S.: Bacterial carotenoid. XLVIII. Total syntheses of carotenes of 1, 2-dihydro series. Acta Chem. Scand. 29, 1015–1023 (1975)CrossRefGoogle Scholar
  61. 61.
    Ramana, V.V., Kapoor, S., Shobha, E., Ramprasad, E.V., Sasikala, C., Ramana, C.V.: Blastochloris gulmargensis sp. nov., isolated from an epilithic phototrophic biofilm. Int. J. Syst. Evol. Microbiol. 61, 1811–1816 (2011)CrossRefGoogle Scholar
  62. 62.
    Takaichi, S.: Characterization of carotenes in a combination of a C18 HPLC column with isocratic elution and absorption spectra with a photodiode-array detector. Photosynth. Res. 65, 93–99 (2000)CrossRefGoogle Scholar
  63. 63.
    Cao, J., Huang, X., Qu, Y., Zhuang, Z., Deng, Y., Lu, S.: Cloning and functional characterization of a lycopene β-cyclase from macrophytic red alga Bangia fuscopurpurea. Mar. Drugs. (2017).  https://doi.org/10.3390/md15040116 Google Scholar
  64. 64.
    Takehara, M., Nishimura, M., Kuwa, T., Inoue, Y., Kitamura, C., Kumagai, T., Honda, M.: Characterization and thermal isomerization of (all-E)-lycopene. J. Agric. Food Chem. 62, 264–269 (2014)CrossRefGoogle Scholar
  65. 65.
    Yuan, J.P., Chen, F., Liu, X., Li, X.Z.: Carotenoid composition in the green microalga Chlorococcum. Food Chem. 76, 319–325 (2002)CrossRefGoogle Scholar
  66. 66.
    Giovannucci, E.: Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J. Natl. Cancer Inst. 91, 317–331 (1999)CrossRefGoogle Scholar
  67. 67.
    Shi, J., Dai, Y., Kakuda, Y., Mittal, G., Xue, S.J.: Effect of heating and exposure to light on the stability of lycopene in tomato puree. Food Control 19, 514–520 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Department of Biochemistry, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  3. 3.Applied Taxonomic Research CenterKhon Kaen UniversityKhon KaenThailand

Personalised recommendations