Enhanced Biogas Production from Rice Husk Through Solid-State Chemical Pretreatments

  • Akinola David OlugbemideEmail author
  • Labunmi Lajide
  • Albert Adebayo
  • Bodunde Joseph Owolabi
Original Paper


Solid-state chemical pretreatment was carried out on rice husk (RH) for biogas production with hydrochloric acid (HCl), sodium hydroxide (NaOH) and ethanol (C2H5OH), at three concentrations i.e., 1, 3 and 5% at 100 and 120 °C for 60 min. Ethanol (organosolv) pretreated sample with 3% concentration and pretreatment temperature of 100 °C (3E100) had the highest biogas production of 5545 mL followed by NaOH pretreated substrate (3N100) with 4705 mL while acid pretreated sample (5H100) produced 700 mL which was lower than the control (raw RH) which was 2500 mL. The biogas yields values were 67.32, 60.89, 32.26 and 9.32 mL/gVS for 3E100, 3N100, RH and 5H100 respectively. Alkaline and organosolv pretreatments improved biogas quality with methane contents of 50.27 and 50.68%. A confirmation that solid state chemical pretreatment of RH with NaOH and C2H5OH could significantly enhance biogas production. The viability of the digestates as biofertilizer was evaluated with the conclusion that they could be used as low grade fertilizers based on their mineral contents and heavy metal concentrations.


Biogas Rice husk Solid-state chemical pretreatment Organosolv Biofertilizer 



  1. 1.
    Midilli, A., Dincer, I., Ay, M.: Green energy strategies for sustainable development. Energy Policy 34, 3623–3633 (2006)Google Scholar
  2. 2.
    Dias, M.O., Modesto, M., Ensinas, A.V., et al.: Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems. Energy 36(6), 3691–3703 (2010)Google Scholar
  3. 3.
    Akinbami, J.F., Ilori, M.O., Oyebisi, T.O., et al.: Biogas energy use in Nigeria: current status, future prospects and policy implications. Renew. Sustain. Energy Rev. 5(1), 97–112 (2001)Google Scholar
  4. 4.
    Oyedepo, S.O.: On energy for sustainable development in Nigeria. Renew. Sustain. Energy Rev. 16, 2583–2598 (2012)Google Scholar
  5. 5.
    Damisa, D., Ameh, J.B., Umoh, V.J.: Effect of chemical pre-treatment of some lignocellulosic wastes on the recovery of cellulose from Aspergillus niger AH3 mutant. Afr. J. Biotechnol. 7(14), 2444–2450 (2008)Google Scholar
  6. 6.
    Olawale, O., Oyawale, F.A.: Characterization of rice husk via atomic absorption spectrophotometer for optimal silica production. Int. J. Sci. Technol. 2(4), 210–213 (2012)Google Scholar
  7. 7.
    Chungsangunsit, T., Gheewala, S.H., Patumsawad, S.: Environmental profile of power generation from rice husk in Thailand. The Joint International Conference on Sustainable Energy and Environment, 1–3 December, 2004, Hua Hin, Thailand pp. 739–742. (2004)Google Scholar
  8. 8.
    Mtui, G.Y.S.: Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr. J. Biotechnol. 8(8), 1398–1415 (2009)Google Scholar
  9. 9.
    Pavlostathis, S.G., Gossett, J.M.: Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol. Bioeng. 27, 334–344 (1985)Google Scholar
  10. 10.
    Ariunbaatar, J., Panico, A., Esposito, G., et al.: Pretreatment methods to enhance anaerobic digestion of organic solid wastes. Appl. Energy 123, 143–156 (2013)Google Scholar
  11. 11.
    Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., et al.: Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29(6), 675–685 (2011)Google Scholar
  12. 12.
    He, Y., Pang, Y., Liu, Y., et al.: Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 22(4), 2775–2781 (2008)Google Scholar
  13. 13.
    Pang, Y.Z., Liu, Y.P., Li, X.J., et al.: Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. Energy Fuels 22(4), 2761–2766 (2008)Google Scholar
  14. 14.
    Mirmohamadsadeghi, S., Karimi, K., Zamani, A., et al.: Enhanced solid-state biogas production from lignocellulosic biomass by organosolv pretreatment. Biomed. Res. Int. 2014, 1–6 (2014)Google Scholar
  15. 15.
    He, Y., Pang, Y., Li, X., et al.: Investigation on the changes of main compositions and extractives of rice straw pretreated with sodium hydroxide for biogas production. Energy Fuels 23, 2220–2224 (2009)Google Scholar
  16. 16.
    Olugbemide, A.D., Lajide, L., Adebayo, A., et al.: Production of second-generation biofuel from five tropical lignocellulosic materials: effects of particle size and dilution ratio. Chem. Eng. Process. Technol. 2(2), 1030 (2016)Google Scholar
  17. 17.
    Shilpkar, P., Shah, M., Chaudhary, D.R.: An alternate use of Calotropis gigantea: biomethanation. Curr. Sci. 92(4), 435–437 (2007)Google Scholar
  18. 18.
    De la Rubia, M.A., Fernández-Cegrí, V., Raposo, F., et al.: Anaerobic digestion of sunflower oil cake: a current overview. Water Sci. Technol. 67(2), 410–417 (2013)Google Scholar
  19. 19.
    Mokobia, K., Ikhuoria, E.U., Olugbemide, A.D., et al.: Production and characterization of biogas obtained from sugarcane leaves. Int. J. Basic Appl. Sci. 1, 258–262 (2012)Google Scholar
  20. 20.
    Di Girolamo, G.: Methane production through anaerobic digestion of dedicated energy crops. Ph.D Thesis submitted to the Department of Agricultural Sciences, University of Bologna, Viale Fanin, Bologna, Italy (2014)Google Scholar
  21. 21.
    AOAC, Association of Official Analytical Chemists: Official Methods of Analysis of the Association of Official Analytical Chemists. (14th ed.), AOAC, Washington, DC (1990)Google Scholar
  22. 22.
    ASTM, American Society for Testing and Materials. Standard Methods of Test for Alcohol-Benzene Solubility of Wood ASTM D1 107-56. ASTM, West Conshohocken (1972)Google Scholar
  23. 23.
    Olugbemide, A.D., Lajide, L., Adebayo, A., et al.: Kinetic study of biogas production from raw and solid-state organosolv pretreated rice husk. J. Biofuels 7(2), 110–118 (2016)Google Scholar
  24. 24.
    Olugbemide, A.D., Lajide, L., Adebayo, A., et al.: Optimization and kinetic study of biogas production from rice husk through solid-state alkaline pretreatment method. Invertis J. Renew. Energy 6(4), 175–180 (2016)Google Scholar
  25. 25.
    Li, Y., Zhang, R., Liu, X., et al.: Evaluating methane production from anaerobic mono-and co-digestion of kitchen waste, corn stover, and chicken manure. Energy Fuels 27(4), 2085–2091 (2014)Google Scholar
  26. 26.
    Teghammar, A., Castillo, M.P., Ascue, J., et al.: Improved anaerobic digestion by addition of paper tube residuals: pretreatment, stabilizing and synergetic effects. Energy and Fuels 27, 277–284 (2012)Google Scholar
  27. 27.
    Juanga, J.P.: Optimizing dry anaerobic digestion of organic fraction of municipal solid waste. M. E. Thesis. Asian Institute of Technology, Bankok, Thailand (2005)Google Scholar
  28. 28.
    Wyman, C.E.: Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. 1st Edn. Edited by Charles E. Wyman. Fundamentals of Biomass Pretreatment by Fractionation. Wiley, New York (2013)Google Scholar
  29. 29.
    Donohoe, B.S., Decker, S.R., Tucker, M.P., et al.: Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng. 101(5), 913–925 (2008)Google Scholar
  30. 30.
    Karp, E.M., Resch, M.G., Donohoe, B.S., et al.: Alkaline pretreatment of switchgrass. Sustain. Chem. Eng. 3, 1479–1491 (2015)Google Scholar
  31. 31.
    Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9(9), 1621–1651 (2008)Google Scholar
  32. 32.
    Welker, C.M., Balasubramanian, V.K., Petti, C., et al.: Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies 8(8), 7654–7676 (2015)Google Scholar
  33. 33.
    Teghammar, A., Karimi, K., Horváth, I.S., et al.: Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass Bioenergy 36, 116–120 (2012)Google Scholar
  34. 34.
    Pu, Y., Hu, F., Huang, F., et al.: Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol. Biofuels 6(1), 15 (2013)Google Scholar
  35. 35.
    Bharathiraja, B., Sudharsanaa, T., Bharghavi, A., et al.: Insight on lignocellulosic pretreatments for biofuel production- SEM and reduction of lignin analysis. Int. J. Chem. Technol. Res. 6, 4334–4445 (2014)Google Scholar
  36. 36.
    Marrugo, G., Valdes, C.F., Chejne, F.: Characterization of Colombian agro industrial biomass residues as energy resources. Energy Fuels 30, 8386–8398 (2016)Google Scholar
  37. 37.
    Li, F., Hu, H., Yao, R., et al.: Structure and saccharification of rice straw pretreated with microwave-assisted diluted lye. Ind. Eng. Chem. Res. 51, 6270–6274 (2012)Google Scholar
  38. 38.
    Yao, Y., He, M., Ren, Y., et al.: Anaerobic digestion of poplar processing residues for methane production after alkaline treatment. Bioresour. Technol. 134, 347–352 (2012)Google Scholar
  39. 39.
    Zhao, Q., Leonhardt, E., MacConnell, C., et al.: Purification Technologies for Biogas Generated by Anaerobic Digestion. Compressed Biomethane CSANR, Washington, DC, pp. 1–24 (2009)Google Scholar
  40. 40.
    Mirmohamadsadeghi, S., Karimi, K., Horváth, I.S.: Improvement of solid state biogas production from wood by concentrated phosphoric acid pretreatment. Bioresources 11(2), 3230–3243 (2016)Google Scholar
  41. 41.
    Farahani, S.V., Kim, Y.W., Schall, C.A.: A coupled low temperature oxidative and ionic liquid pretreatment of lignocellulosic biomass. Catal. Today 269, 2–8 (2016)Google Scholar
  42. 42.
    Kim, J., Park, C., Kim, T.H., et al.: Effects of various pre-treatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95, 271–275 (2003)Google Scholar
  43. 43.
    Yue, Z., Liu, R., Yu, H., et al.: Anaerobic ruminal degradation of bulrush through steam explosion pretreatment. Ind. Eng. Chem. Res. 47, 5899–5905 (2008)Google Scholar
  44. 44.
    Vrieze, J., Raport, L., Willems, B., et al.: Inoculum selection influences the biochemical methane potential of agro-industrial substrates. Microb. Biotechnol. 8, 776–786 (2015)Google Scholar
  45. 45.
    Shah, F.A., Mahmood, Q., Shah, M.M., et al.: Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci. World J. 2014, 1–21 (2014)Google Scholar
  46. 46.
    Alkanok, G., Demirel, B., Onay, T.T.: Determination of biogas generation potential as a renewable energy source from supermarket wastes. Waste Manag. 34(1), 134–140 (2013)Google Scholar
  47. 47.
    Pandey, P.K., Ndegwa, P.M., Soupir, M.L., et al.: Efficacies of inocula on the startup of anaerobic reactors treating dairy manure under stirred and unstirred conditions. Biomass Bioenergy 35(7), 2705–2720 (2011)Google Scholar
  48. 48.
    Cheng, X.Y., Zhong, C.: Effects of feed to inoculum ratio, co-digestion, and pretreatment on biogas production from anaerobic digestion of cotton stalk. Energy Fuels 28(5), 3157–3166 (2014)Google Scholar
  49. 49.
    Aiwonegbe, A.E., Akinyomi, J.O., Ikhuoria, E.U.: Utilization of plantain (Musa species) leaves for biogas production. Int. J. Pure Appl. Sci. 9(2), 1–7 (2015)Google Scholar
  50. 50.
    Ofoefule, A.U.: Investigation of the biogas production potentials of Bambara nut chaff (Vigna subterranea). Adv. Appl. Sci. Res. 2(2), 55–61 (2011)Google Scholar
  51. 51.
    Liang, Y., Yin, S., Si, Y., et al.: Effect of pretreatment and total solid content on thermophilic dry anaerobic digestion of spartina alterniflora. Chem. Eng. J. 237, 209–216 (2014)Google Scholar
  52. 52.
    Zhang, Z., Li, W., Zhang, G., et al.: Impact of pretreatment on solid state anaerobic digestion of yard waste for biogas production. World J. Microbiol. Biotechnol. 30(2), 547–554 (2013)Google Scholar
  53. 53.
    Menardo, S., Airoldi, G., Balsari, P.: The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresour. Technol. 104, 708–714 (2012)Google Scholar
  54. 54.
    Fdez-Guelfo, L.A., Alvarez-Gallego, C., Marquez, D.S., et al.: Start-up of thermophilic-dry AD of OFMSW using adapted modified SEBAC inoculums. Bioresour. Technol. 101, 9031–9039 (2000)Google Scholar
  55. 55.
    Zhou, S., Zhang, Y., Dong, Y.: Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy 46(1), 644–648 (2012)Google Scholar
  56. 56.
    Lin, Y., Wang, D., Li, Q., et al.: Kinetic study of mesophilic anaerobic digestion of pulp & paper sludge. Biomass Bioenergy 35(12), 4862–4867 (2011)Google Scholar
  57. 57.
    Risberg, K.: Quality and function of anaerobic digestion residues. Doctoral Thesis Swedish University of Agricultural Sciences Uppsala (2015)Google Scholar
  58. 58.
    Nkoa, R.: Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron. Sustain. Dev. 34(2), 473–492 (2014)Google Scholar
  59. 59.
    Bouallagui, H., Cheikh, R.B., Marouani, L., et al.: Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresour. Technol. 86(1), 85–89 (2003)Google Scholar
  60. 60.
    Ali, N., Kurchania, A.K., Babel, S.: Biomethanasation of Jatropha curcas defatted waste. J. Eng. Technol. Res. 2(3), 38–43 (2010)Google Scholar
  61. 61.
    Masse, D.I., Croteau, F., Masse, L.: The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors. Bioresour. Technol. 98(15), 2819–2823 (2007)Google Scholar
  62. 62.
    Möller, K., Torsten, M.: Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng. Life Sci. 12(3), 242–257 (2012)Google Scholar
  63. 63.
    Demirel, B., Göl, N.P., Onay, T.T.: Erratum to: evaluation of heavy metal content in digestate from batch anaerobic co-digestion of sunflower hulls and poultry manure. J. Mater. Cycles Waste Manag. 3(15), 409–409 (2013)Google Scholar
  64. 64.
    Alibardi, L., Cossu, R.: Stabilization of digestates from wet and dry anaerobic digestion. Proceedings Venice: Third International Symposium on Energy from Biomass and Waste, Venice, Italy; 8–11 November (2010)Google Scholar
  65. 65.
    Nazir, R., Khan, M., Masab, M., et al.: Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plant and analysis of physico-chemical parameters of soil and water collected from Tanda Dam kohat. J. Pharm. Sci. Res. 7(3), 89 (2015)Google Scholar
  66. 66.
    Mahnert, P., Linke, B.: Kinetic study of biogas production from energy crops and animal waste slurry: effect of organic loading rate and reactor size. Environ. Technol. 30(1), 93–99 (2008)Google Scholar
  67. 67.
    Song, Z., Zhang, C., Yang, G., et al.: Comparison of biogas development from households and medium and large-scale biogas plants in rural China. Renew. Sustain. Energy Rev. 33, 204–213 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Akinola David Olugbemide
    • 1
    Email author
  • Labunmi Lajide
    • 2
  • Albert Adebayo
    • 2
  • Bodunde Joseph Owolabi
    • 2
  1. 1.Department of Basic SciencesAuchi PolytechnicAuchiNigeria
  2. 2.Department of ChemistryFederal University of TechnologyAkureNigeria

Personalised recommendations