Advertisement

Using Industrial Sewage Sludge-Derived Biochar to Immobilize Selected Heavy Metals in a Contaminated Calcareous Soil

  • Fatereh Karimi
  • Ghasem Rahimi
  • Zahra Kolahchi
  • Abolfazl Khademi Jolgeh Nezhad
Original Paper
  • 21 Downloads

Abstract

Many studies have indicated the effect of biochar on the fractionation of heavy metals in acidic soils, while little information is available on their effects on contaminated calcareous soils. Applying biochar products from sewage sludge pyrolysis as soil amendment was investigated in this study with special attention paid to fractionation of Pb and Cd in calcareous soil around a lead–zinc mine when pyrolysis temperature and biochar application rates were changed. The biochar feedstock was industrial sewage sludge, collected from the Baharan industrial park, using an anaerobic–anoxic–aerobic treatment process at two different temperatures (300 and 600 °C), and then adopted as amendment for the soil. The results revealed that with increasing pyrolysis temperature, the biochar’s levels of N, H and O decreased, while its amount of C increased significantly. The highest rate of the biochar application (8%) had lower pH compared to the control soil for both biochars. The soil EC with 8% biochar 300 °C was less than biochar 600 °C, perhaps due to the higher amount of ash in the biochar produced at 600 °C. The results showed that biochar 600 was more porous than biochar 300. The exposed porous structure made the pores more accessible for the adsorbate particles. Therefore, the biochar produced at 600 °C, more effectively, reduced the exchangeable form of Pb and Cd. The organic forms of Pb and Cd increased with increasing levels of biochar application, and this trend was higher in the treated soil with biochar produced at 600 °C due to high organic carbon content. The results showed that most of Pb and Cd existed in the residual form after application of biochar, especially at 600 °C, resulting in a significant reduction in their bioavaliability.

Keywords

Biochar Fractionation Cadmium Zinc Immobilization Amendment 

Notes

References

  1. 1.
    Hou, D., Connor, D., Nathanail, P., Tian, L., Ma, Y.: Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination. A critical review. Environ. Pollut. 231, 1188–1200 (2017).  https://doi.org/10.1016/j.envpol.2017.07.021 CrossRefGoogle Scholar
  2. 2.
    Hou, D., Li, F.: Complexities surrounding china’s soil action plan. Land Degrad. Dev. (2017).  https://doi.org/10.1002/ldr.2741 Google Scholar
  3. 3.
    O’Connor, D., Peng, T., Zhang, J., Tsang, C.W., Alessi, D.S., Shen, D.Zhengtao, Nanthi, Z., Bolan, S., Hou, N.: D.: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci. Total Environ. 619–620, 815–826 (2018).  https://doi.org/10.1016/j.scitotenv.2017.11.132 CrossRefGoogle Scholar
  4. 4.
    Chen, H., Teng, Y., Lu, S., Wang, Y., Wang, J.: Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 512–513, 143–153 (2015).  https://doi.org/10.1016/j.scitotenv.2015.01.025 CrossRefGoogle Scholar
  5. 5.
    Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N.W., Beesley, L.: Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 191(1), 41–48 (2011).  https://doi.org/10.1016/j.jhazmat.2011.04.025 CrossRefGoogle Scholar
  6. 6.
    Mohamed, I., Zhang, G., Li, Z., Liu, Y., Chen, F., Dai, K.: Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecol. Eng. 84, 67–76 (2015).  https://doi.org/10.1016/j.ecoleng.2015.07.009 CrossRefGoogle Scholar
  7. 7.
    Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M.B., Hay, A.G.: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Biores. Technol. 102(19), 8877–8884 (2011).  https://doi.org/10.1016/j.biortech.2011.06.078 CrossRefGoogle Scholar
  8. 8.
    Hwang, I.H., Ouchi, Y., Matsuto, T.: Characteristics of leachate from pyrolysis residue of sewage sludge. Chemosphere. 68(10), 1913–1919 (2007).  https://doi.org/10.1016/j.chemosphere.2007.02.060 CrossRefGoogle Scholar
  9. 9.
    Caballero, J.A., Front, R., Marcilla, A., Conesa, J.A.: Characterization of sewage sludges by primary and secondary pyrolysis. J. Anal. Appl. Pyrol. 40–41, 433–450 (1997).  https://doi.org/10.1016/S0165-2370(97)00045-4 CrossRefGoogle Scholar
  10. 10.
    Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., Chen, Y.: Chemical characterization of rice straw-derived biochar for soil amendment. Biomass. Bioenerg. 47, 268–276 (2012).  https://doi.org/10.1016/j.biombioe.2012.09.034 CrossRefGoogle Scholar
  11. 11.
    Kim, K.H., Kim, J.-Y., Cho, T.-S., Choi, J.W.: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Biores. Technol. 118, 158–162 (2012).  https://doi.org/10.1016/j.biortech.2012.04.094 CrossRefGoogle Scholar
  12. 12.
    Méndez, A., Tarquis, A.M., Saa-Requejo, A., Guerrero, F., Gascó, G.: Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Chemosphere. 93(4), 668–676 (2013).  https://doi.org/10.1016/j.chemosphere.2013.06.004 CrossRefGoogle Scholar
  13. 13.
    Yuan, H., Lu, T., Zhao, D., Huang, H., Noriyuki, K., Chen, Y.: Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis. J. Mater. Cycles Waste Manage. 15(3), 357–361 (2013).  https://doi.org/10.1007/s10163-013-0126-9 CrossRefGoogle Scholar
  14. 14.
    Chen, T., Zhang, Y., Wang, H., Lu, W., Zhou, Z., Zhang, Y., Ren, L.: Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Biores. Technol. 164, 47–54 (2014).  https://doi.org/10.1016/j.biortech.2014.04.048 CrossRefGoogle Scholar
  15. 15.
    Zama, E.F., Zhu, Y.-G., Reid, B.J., Sun, G.-X.: The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. J. Clean. Prod. 148, 127–136 (2017).  https://doi.org/10.1016/j.jclepro.2017.01.125 CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Yang, H., Wang, X., Zhang, S., Chen, H.: Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Biores. Technol. 107, 411–418 (2012).  https://doi.org/10.1016/j.biortech.2011.10.074 CrossRefGoogle Scholar
  17. 17.
    Chun, Y., Sheng, G., Chiou, C.T., Xing, B.: Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 38(17), 4649–4655 (2004).  https://doi.org/10.1021/es035034w CrossRefGoogle Scholar
  18. 18.
    Demirbaş, A.: Calculation of higher heating values of biomass fuels. Fuel. 76(5), 431–434 (1997).  https://doi.org/10.1016/S0016-2361(97)85520-2 CrossRefGoogle Scholar
  19. 19.
    Singh, A., Biswas, A.K., Rashmi Singhai, R., Lakaria, B.L., Dubey, A.K.: Effect of pyrolysis temperature and retention time on mustard straw derived biochar for soil amendment. J. Basic Appl. Sci. Res. 5(9), 31–37 (2015).  https://doi.org/10.1021/jf104206c Google Scholar
  20. 20.
    Zhao, B., Connor, D., Zhang, J., Peng, T., Shen, Z., Tsang, D.C.W., Hou, D.: Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 174, 977–987 (2018).  https://doi.org/10.1016/j.jclepro.2017.11.013 CrossRefGoogle Scholar
  21. 21.
    Sposito, G., Lund, L.J., Chang, A.C.: Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases1. Soil Sci. Soc. Am. J. 46, 260–264 (1982).  https://doi.org/10.2136/sssaj1982.03615995004600020009x CrossRefGoogle Scholar
  22. 22.
    Bower, C.A., Reitemeier, R.F., Fireman, M.: Exchangeable cation analysis of saline and alkali soils. Soil Sci. 73, 251–262 (1954).  https://doi.org/10.1097/00010694-195204000-00001 CrossRefGoogle Scholar
  23. 23.
    Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zięba, J., Pasieczna-Patkowska, S.: Effect of sewage sludge properties on the biochar charactristic. J. Anal. Appl. Pyrolysis. 112, 201–213 (2015).  https://doi.org/10.1016/j.jaap.2015.01.025 CrossRefGoogle Scholar
  24. 24.
    Rey, A., Petsikos, C., Jarvis, P.G., Grace, J.: Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur. J. Soil Sci. 56(5), 589–599 (2005).  https://doi.org/10.1111/j.1365-2389.2004.00699.x CrossRefGoogle Scholar
  25. 25.
    Wu, W., Li, J., Niazi, N., Müller, K., Chu, Y., Zhang, L., Yuan, G., Lu, K., Song, Z., Wang, H.: Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environ. Sci. Pollut. Res. 23(22), 22890–22896 (2016).  https://doi.org/10.1007/s11356-016-7428-0 CrossRefGoogle Scholar
  26. 26.
    Zhang, J., Lü, F., Zhang, H., Shao, L., Chen, D., He, P.: Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Sci. Rep. 5, 9406 (2015).  https://doi.org/10.1038/srep09406 CrossRefGoogle Scholar
  27. 27.
    Grube, M., Lin, J.-G., Lee, P.H., Kokorevicha, S.: Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geodema 130, 324–333 (2006).  https://doi.org/10.1016/j.geoderma.2005.02.005 CrossRefGoogle Scholar
  28. 28.
    Claoston, N., Samsuri, A.W., Ahmad Husni, M.H., Mohd Amran, M.S.: Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manag. Res. 32(4), 331–339 (2014).  https://doi.org/10.1177/0734242X14525822 CrossRefGoogle Scholar
  29. 29.
    Moreno-Castilla, C., Lopez-Ramon, M., et al.: Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38, 1995–2001 (2000).  https://doi.org/10.1016/S0008-6223(00)00048-8 CrossRefGoogle Scholar
  30. 30.
    Nguyen, B., Lehmann, J., Hockaday, W.C., Joseph, S., Masiello, C.A.: Temperature sensitivity of black carbon decomposition and oxidation. Environ. Sci. Technol. 44, 3324–3331 (2010).  https://doi.org/10.1021/es903016y CrossRefGoogle Scholar
  31. 31.
    Jin, J., Li, Y., Zhang, J., Wu, S., Cao, Y., Liang, P., Zhang, J., Wong, M.H., Wang, M., Shan, S., Christie, P.: Influence of pyrolysis temprature on properties and environmental safety of heavy metals in biochars drived from municipal sewage sludge. J. Hazard. Mater. 320, 417–426 (2016).  https://doi.org/10.1016/j.jhazmat.2016.08.050 CrossRefGoogle Scholar
  32. 32.
    Lua, H., Zhang, W., Wang, W., Zhuang, S., Yang, L., Qiub, Y.: R.: Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J. Anal. Appl. Pyrolysis. 102, 137–143 (2013).  https://doi.org/10.1016/j.jaap.2013.03.004 CrossRefGoogle Scholar
  33. 33.
    Fu, P., Hu, S., Xinag, J., Sun, L., Yang, T., Zhang, A., Wang, Y., Chen, G.: Effects of pyrolysis temperature on characteristics of porosity in biomass chars. In: 2009 International Conference on Energy and Environment Technology, 16–18 Oct 2009, pp. 109–112 (2009)Google Scholar
  34. 34.
    Shenbagavalli, S., Mahimairaja, S.: Characterization and effect of biochar on nitrogen and carbon dynamics in soil. Int. J. Adv. Biol. Res. 2, 249–255 (2012)Google Scholar
  35. 35.
    Cheng, C.-H., Lehmann, J., Engelhard, M.H.: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta. 72(6), 1598–1610 (2008).  https://doi.org/10.1016/j.gca.2008.01.010 CrossRefGoogle Scholar
  36. 36.
    Liu, X.H., Zhang, X.C.: Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments. Int. J. Agric. Biol. 14, 745–750 (2012)Google Scholar
  37. 37.
    Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S., Cowie, A.: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil. 327(1), 235–246 (2010).  https://doi.org/10.1007/s11104-009-0050-x CrossRefGoogle Scholar
  38. 38.
    Fellet, G., Marchiol, L., Delle Vedove, G., Peressotti, A.: Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere. 83(9), 1262–1267 (2011).  https://doi.org/10.1016/j.chemosphere.2011.03.053 CrossRefGoogle Scholar
  39. 39.
    Yuan, J.-H., Xu, R.-K., Zhang, H.: The forms of alkalis in the biochar produced from crop residues at different temperatures. Biores. Technol. 102(3), 3488–3497 (2011).  https://doi.org/10.1016/j.biortech.2010.11.018 CrossRefGoogle Scholar
  40. 40.
    Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J.: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil. 333(1), 117–128 (2010).  https://doi.org/10.1007/s11104-010-0327-0 CrossRefGoogle Scholar
  41. 41.
    Lahori, A.H., Guo, Z., Zhang, Z., li, R., Mahar, D.A., Awasthi, M., Shen, F., Sial, A., Kumbhar, T., Wang, F., Jiang, P.: S.: Use of biochar as an amendment for remediation of heavy metal-contaminated soils. Prospect. Chall. 27, 991–1014 (2017).  https://doi.org/10.1016/S1002-0160(17)60490-9 Google Scholar
  42. 42.
    Abdel-Fattah, T.M., Mahmoudb, M.E., Ahmedb, S.B., Huff, N.D., Lee, J.W., Kumar, S.: Biochar from woody biomass for removing metal contaminants and carbon sequestration. J. Ind. Eng. Chem. 22, 103–109 (2015).  https://doi.org/10.1016/j.jiec.2014.06.030 CrossRefGoogle Scholar
  43. 43.
    Cao, X., Ma, L., Gao, B., Harris, W.: Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 43(9), 3285–3291 (2009).  https://doi.org/10.1021/es803092k CrossRefGoogle Scholar
  44. 44.
    Ahmad, M., Ok, Y.S., Kim, B.-Y., Ahn, J.-H., Lee, Y.H., Zhang, M., Moon, D.H., Al-Wabel, M.I., Lee, S.S.: Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. J. Environ. Manag. 166, 131–139 (2016).  https://doi.org/10.1016/j.jenvman.2015.10.006 CrossRefGoogle Scholar
  45. 45.
    Park, J.H., Choppala, G.K., Bolan, N.S., Chung, J.W., Chuasavathi, H.: Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 348, 439–451 (2011).  https://doi.org/10.1007/s11104-011-0948-y CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Soil Science, College of AgricultureBu-Ali Sina UniversityHamedanIran
  2. 2.Department of Soil Science, College of AgricultureShahid Bahonar University of KermanKermanIran

Personalised recommendations