Advertisement

Process Optimisation of Enzymatic Saccharification of Soaking Assisted and Thermal Pretreated Cassava Peels Waste for Bioethanol Production

  • Gabriel S. Aruwajoye
  • Funmilayo D. Faloye
  • Evariste Gueguim KanaEmail author
Original Paper
  • 47 Downloads

Abstract

In this study, enzymatic saccharification of soaking assisted and thermal pretreated cassava peels waste was investigated using the response surface methodology. Optimization studies on fermentable sugar yield for bioethanol production were carried out. The effect of substrate loading (% w/v), α-amylase concentration (U/g), amyloglucosidase concentration (U/mL) and cellulase concentration (% v/w) were investigated within the range of 10–30, 90–150, 30–100 and 0–3 respectively. The model gave a coefficient of determination (R2) of 0.89 and the optimum process conditions established were substrate loading of 10.16% w/v, α-amylase concentration of 125.3 U/g, amyloglucosidase concentration of 74.06 U/mL and 2.34% v/w cellulase. Experimental validation gave 0.58 g/g fermentable sugar yield and a saccharification efficiency of 78.66%. FTIR analysis revealed the changes in the functional group which further corroborated the effectiveness of these enzymatic conditions. Subsequent fermentation of the hydrolysate gave an ethanol yield of 0.53 g/g using Saccharomyces cerevisiae. The study therefore substantiates the potential of cassava peels waste for bioethanol production.

Graphical Abstract

Keywords

Cassava peels Response surface methodology Enzymatic saccharification Fermentation Bioethanol production 

Notes

Funding

This study was funded by National Research Foundation.

References

  1. 1.
    Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combus. Sci. 38(4), 522–550 (2012)Google Scholar
  2. 2.
    Sukumaran, R.K., Singhania, R.R., Mathew, G.M., Pandey, A.: Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34(2), 421–424 (2009)Google Scholar
  3. 3.
    Singh, Y.D., Mahanta, P., Bora, U.: Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy. 103, 490–500 (2017)Google Scholar
  4. 4.
    Pandiyan, K., Tiwari, R., Singh, S., Nain, P.K., Rana, S., Arora, A., Singh, S.B., Nain, L.: Optimization of enzymatic saccharification of alkali pretreated Parthenium sp. using response surface methodology. Enzyme Res. (2014).  https://doi.org/10.1155/2014/764898 Google Scholar
  5. 5.
    Kan, X., Yao, Z., Zhang, J., Tong, Y.W., Yang, W., Dai, Y., Wang, C.-H.: Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment. Bioresour. Technol. 228, 77–88 (2017)Google Scholar
  6. 6.
    Limayem, A., Ricke, S.C.: Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38(4), 449–467 (2012)Google Scholar
  7. 7.
    Pooja, N., Padmaja, G.: Pretreatment techniques to enhance the enzymatic degradability of agricultural and processing residues of cassava. J. Microbiol. Biotechnol. 4(1), 57–67 (2014)Google Scholar
  8. 8.
    Kinnarinen, T., Häkkinen, A.: Influence of enzyme loading on enzymatic hydrolysis of cardboard waste and size distribution of the resulting fiber residue. Bioresour. Technol. 159, 136–142 (2014)Google Scholar
  9. 9.
    Aripin, A.M., Kassim, A.S.M., Daud, Z., Hatta, M.Z.M.: Cassava peels for alternative fibre in pulp and paper industry: chemical properties and morphology characterization. Int. J. Integr. Eng. 5(1), 30–33 (2013)Google Scholar
  10. 10.
    Adekunle, A., Orsat, V., Raghavan, V.: Lignocellulosic bioethanol: a review and design conceptualization study of production from cassava peels. Renew. Sustain. Energy Rev. 64, 518–530 (2016)Google Scholar
  11. 11.
    Moshi, A.P., Temu, S.G., Nges, I.A., Malmo, G., Hosea, K.M., Elisante, E., Mattiasson, B.: Combined production of bioethanol and biogas from peels of wild cassava Manihot glaziovii. Chem. Eng. J. 279, 297–306 (2015)Google Scholar
  12. 12.
    Nanssou, P.A.K., Nono, Y.J., Kapseu, C.: Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process. Renew. Energy. 97, 252–265 (2016)Google Scholar
  13. 13.
    Olanbiwoninu, A., Odunfa, S.: Enhancing the production of reducing sugars from cassava peels by pretreatment methods. Int. J. Sci. Technol. 2(9), 650–657 (2012)Google Scholar
  14. 14.
    Mohammed, A., Oyeleke, S., Egwim, E.: Pretreatment and hydrolysis of cassava peels for fermentable sugar production. Asian J Biochem. 9, 65–70 (2014)Google Scholar
  15. 15.
    Aruwajoye, G.S., Faloye, F.D., Kana, E.G.: Soaking assisted thermal pretreatment of cassava peels wastes for fermentable sugar production: process modelling and optimization. Energy Convers. Manag. 150, 558–566 (2017)Google Scholar
  16. 16.
    Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W.: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. 109(4), 1083–1087 (2012)Google Scholar
  17. 17.
    Kazi, F.K., Fortman, J.A., Anex, R.P., Hsu, D.D., Aden, A., Dutta, A., Kothandaraman, G.: Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89, S20–S28 (2010)Google Scholar
  18. 18.
    Zhou, J., Wang, Y.-H., Chu, J., Luo, L.-Z., Zhuang, Y.-P., Zhang, S.-L.: Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour. Technol. 100(2), 819–825 (2009)Google Scholar
  19. 19.
    Caspeta, L., Caro-Bermúdez, M.A., Ponce-Noyola, T., Martinez, A.: Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl. Energy 113, 277–286 (2014)Google Scholar
  20. 20.
    Giordano, P.C., Martínez, H.D., Iglesias, A.A., Beccaria, A.J., Goicoechea, H.C.: Application of response surface methodology and artificial neural networks for optimization of recombinant Oryza sativa non-symbiotic hemoglobin 1 production by Escherichia coli in medium containing byproduct glycerol. Bioresour. Technol. 101(19), 7537–7544 (2010)Google Scholar
  21. 21.
    Corredor, D., Bean, S., Wang, D.: Pretreatment and enzymatic hydrolysis of sorghum bran. Cereal Chem. 84(1), 61–66 (2007)Google Scholar
  22. 22.
    Marx, S., Nquma, T.Y.: Cassava as feedstock for ethanol production in South Africa. Afr. J. Biotechnol. 12(31), 4975–4983 (2013)Google Scholar
  23. 23.
    Sebayang, A.H., Hassan, M.H., Ong, H.C., Dharma, S., Silitonga, A.S., Kusumo, F., Mahlia, T.M.I., Bahar, A.H.: Optimization of reducing sugar production from Manihot glaziovii starch using response surface methodology. Energies 10(1), 35 (2017)Google Scholar
  24. 24.
    Montgomery, D.C., Myers, R.H.: Response surface methodology. Des. Anal. Exp. 445–474 (1995)Google Scholar
  25. 25.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)Google Scholar
  26. 26.
    Selig, M., Weiss, N., Ji, Y.: Enzymatic saccharification of lignocellulosic biomass: Laboratory Analytical Procedure (LAP): Issue Date, 3/21/2008: National Renewable Energy Laboratory (2008)Google Scholar
  27. 27.
    Laopaiboon, L., Nuanpeng, S., Srinophakun, P., Klanrit, P., Laopaiboon, P.: Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresour. Technol. 100(18), 4176–4182 (2009)Google Scholar
  28. 28.
    Hu, F., Jung, S., Ragauskas, A.: Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol. 117, 7–12 (2012)Google Scholar
  29. 29.
    Li, M.-F., Fan, Y.-M., Xu, F., Sun, R.-C., Zhang, X.-L.: Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: characterization of the cellulose rich fraction. Ind. Crops Prod. 32(3), 551–559 (2010)Google Scholar
  30. 30.
    Coates, J.: Interpretation of infrared spectra, a practical approach. In: Meyers, R.A. (ed.) Encyclopedia of Analytical Chemistry. Wiley, Chichester (2000)Google Scholar
  31. 31.
    Sherpa, K.C., Ghangrekar, M.M., Banerjee, R.: Optimization of saccharification of enzymatically pretreated sugarcane tops by response surface methodology for ethanol production. Biofuels. (2017).  https://doi.org/10.1080/17597269.2017.1409058 Google Scholar
  32. 32.
    Anuradha Jabasingh, S.: Response surface methodology for the evaluation and comparison of cellulase production by Aspergillus nidulans SU04 and Aspergillus nidulans MTCC344 cultivated on pretreated sugarcane bagasse. Chem. Biochem. Eng. Q. 25(4), 501–511 (2012)Google Scholar
  33. 33.
    Ben Taher, I., Fickers, P., Chniti, S., Hassouna, M.: Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnol. Prog. 33(2), 397–406 (2017)Google Scholar
  34. 34.
    Modenbach, A.A., Nokes, S.E.: Enzymatic hydrolysis of biomass at high-solids loadings—a review. Biomass Bioenergy 56, 526–544 (2013)Google Scholar
  35. 35.
    Chen, H.Z., Liu, Z.H.: Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng Life Sci. 17(5), 489–499 (2017)Google Scholar
  36. 36.
    John, I., Pola, J., Appusamy, A.: Optimization of ultrasonic assisted saccharification of sweet lime peel for bioethanol production using Box–Behnken method. Waste Biomass Valorization. (2017).  https://doi.org/10.1007/s12649-017-0072-1 Google Scholar
  37. 37.
    Arapoglou, D., Varzakas, T., Vlyssides, A., Israilides, C.: Ethanol production from potato peel waste (PPW). Waste Manag. 30(10), 1898–1902 (2010)Google Scholar
  38. 38.
    da Costa, J.A., Marques, J.E. Jr., Gonçalves, L.R.B., Rocha, M.V.P.: Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide. Bioresour. Technol. 179, 249–259 (2015)Google Scholar
  39. 39.
    Obeng, E.M., Budiman, C., Ongkudon, C.M.: Identifying additives for cellulase enhancement—a systematic approach. Biocatal. Agric. Biotechnol. 11, 67–74 (2017)Google Scholar
  40. 40.
    Wilson, D.B.: Cellulases and biofuels. Curr. Opin. Biotechnol. 20(3), 295–299 (2009)Google Scholar
  41. 41.
    Rocha, M.V.P., Rodrigues, T.H.S., de Macedo, G.R., Gonçalves, L.R.: Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric acid for bioethanol production. Appl. Biochem. Biotechnol. 155(1–3), 104–114 (2009)Google Scholar
  42. 42.
    Maitan-Alfenas, G.P., Visser, E.M., Alfenas, R.F., Nogueira, B.R.G., de Campos, G.G., Milagres, A.F., de Vries, R.P., Guimarães, V.M.: The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails: a comparative study. Bioresour. Technol. 192, 670–676 (2015)Google Scholar
  43. 43.
    Mansfield, S.D., Mooney, C., Saddler, J.N.: Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog. 15(5), 804–816 (1999)Google Scholar
  44. 44.
    Khawla, B.J., Sameh, M., Imen, G., Donyes, F., Dhouha, G., Raoudha, E.G., Oumèma, N.-E.: Potato peel as feedstock for bioethanol production: a comparison of acidic and enzymatic hydrolysis. Ind. Crops Prod. 52, 144–149 (2014)Google Scholar
  45. 45.
    Akaracharanya, A., Kesornsit, J., Leepipatpiboon, N., Srinorakutara, T., Kitpreechavanich, V., Tolieng, V.: Evaluation of the waste from cassava starch production as a substrate for ethanol fermentation by Saccharomyces cerevisiae. Ann. Microbiol. 61(3), 431–436 (2011)Google Scholar
  46. 46.
    Izmirlioglu, G., Demirci, A.: Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Appl. Sci. 2(4), 738–753 (2012)Google Scholar
  47. 47.
    Wangpor, J., Prayoonyong, P., Sakdaronnarong, C., Sungpet, A., Jonglertjunya, W.: Bioethanol production from cassava starch by enzymatic hydrolysis, fermentation and ex-situ nanofiltration. Energy Procedia. 138, 883–888 (2017)Google Scholar
  48. 48.
    Betiku, E., Taiwo, A.E.: Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renew Energy. 74, 87–94 (2015)Google Scholar
  49. 49.
    Saha, B.C., Yoshida, T., Cotta, M.A., Sonomoto, K.: Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind. Crops Prod. 44, 367–372 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Discipline of Microbiology, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations