Advertisement

Enhancement of Sewage Sludge Digestion by Co-digestion with Food Waste and Swine Waste

  • Yongtae Ahn
  • Wontae Lee
  • Seoktae Kang
  • Sang-Hyoun KimEmail author
Original Paper
  • 22 Downloads

Abstract

The anaerobic co-digestion of sewage sludge and other organic waste is an attractive method for both waste treatment and biogas production. In this study, we examined the optimal substrate mixing ratio in co-digestion of sewage sludge, swine waste, and food waste using the response surface methodology. The single digestion of sewage sludge produced 138 mL CH4/g total solids (TS) with 35% chemical oxygen demand removal. The co-digestion with food waste and swine waste increased the methane yield to 294 mL/g TS under the optimal mixing ratio of 1:0.39:1 (sewage sludge:food waste:swine waste). The statistical analysis of the experimental data indicated a synergistic effect in the mixing of food waste and swine waste. This study showed that co-digestion of the organic wastes would be a feasible and economic approach to retrofit conventional anaerobic digesters.

Keywords

Co-digestion Sewage sludge Swine waste Food waste Response surface methodology 

Notes

Acknowledgements

The authors would like to acknowledge the financial support of National Research Foundation under “Next Generation Carbon Upcycling Project” (Project No. 2017M1A2A2043150) of the Ministry of Science and ICT, Republic of Korea.

References

  1. 1.
    Tyagi, V.K., Lo, S.-L.: Sludge: a waste or renewable source for energy and resources recovery? Renew. Sust. Energy Rev. 25(0), 708–728 (2013)Google Scholar
  2. 2.
    Rulkens, W.: Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuels 22(1), 9–15 (2008)Google Scholar
  3. 3.
    Min, D.-K., Rhee, S.-W.: Management of municipal solid waste in Korea. In: Pariatamby, A., Tanaka, M. (eds.) Municipal Solid Waste Management in Asia and the Pacific Islands. Environmental Science and Engineering, pp. 173–194. Springer, Singapore, (2014)Google Scholar
  4. 4.
    Davis, R.D.: The impact of EU and UK environmental pressures on the future of sludge treatment and disposal. Water Environ. J. 10(1), 65–69 (1996)Google Scholar
  5. 5.
    Davidsson, Å, Lövstedt, C., la Cour Jansen, J., Gruvberger, C., Aspegren, H.: Co-digestion of grease trap sludge and sewage sludge. Waste Manag. (Oxf.) 28(6), 986–992 (2008)Google Scholar
  6. 6.
    Grachev, A., Zabelkin, S., Burenkov, S., Makarov, A., Bikbulatova, G., Pushkin, S., Zemskov, I.: Pyrolysis of fresh and deposited sewage sludge and investigation of the products. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-017-0096-6 Google Scholar
  7. 7.
    Samolada, M.C., Zabaniotou, A.A.: Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag. (Oxf.) 34(2), 411–420 (2014)Google Scholar
  8. 8.
    Rózsenberszki, T., Koók, L., Hutvágner, D., Nemestóthy, N., Bélafi-Bakó, K., Bakonyi, P., Kurdi, R., Sarkady, A.: Comparison of anaerobic degradation processes for bioenergy generation from liquid fraction of pressed solid waste. Waste Biomass Valoriz. 6(4), 465–473 (2015)Google Scholar
  9. 9.
    Song, Y.-C., Feng, Q., Ahn, Y.: Performance of the bio-electrochemical anaerobic digestion of sewage sludge at different hydraulic retention times. Energy Fuels 30(1), 352–359 (2016)Google Scholar
  10. 10.
    Appels, L., Baeyens, J., Degrève, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34(6), 755–781 (2008)Google Scholar
  11. 11.
    Tchobanoglous, G., Burton, F.L., Stensel, H.D.: Wastewater Engineering: Treatment and Resource Recovery, 5th edn. McGraw-Hill Higher Education, New York; London: McGraw-Hill [distributor] (2014)Google Scholar
  12. 12.
    Eddy, M.: Wastewaeter Engineering-Treatment and Resource Recovery, 5th edn./revised by G. Tchobanoglous, F.L., Burton, H.D. Stensel (eds.) McGraw-Hill, Boston, (2014)Google Scholar
  13. 13.
    Status of energy recovery facilities for organic waste: 2012. In. Ministry of Environment, Korea, (2013)Google Scholar
  14. 14.
    Lee, D.-J., Lee, S.-Y., Bae, J.-S., Kang, J.-G., Kim, K.-H., Rhee, S.-S., Park, J.-H., Cho, J.-S., Chung, J., Seo, D.-C.: Effect of volatile fatty acid concentration on anaerobic degradation rate from field anaerobic digestion facilities treating food waste Leachate in South Korea. J. Chem. 2015, 9 (2015)Google Scholar
  15. 15.
    Waste Statistics: 2016. In. Ministry of Environment, Korea, (2017)Google Scholar
  16. 16.
    Park, J.-H., Kumar, G., Yun, Y.-M., Kwon, J.-C., Kim, S.-H.: Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste. Bioresour. Technol. 248, 134–140 (2018)Google Scholar
  17. 17.
    Kumar, G., Sivagurunathan, P., Park, J.-H., Kim, S.-H.: Anaerobic digestion of food waste to methane at various organic loading rates (OLRs) and hydraulic retention times (HRTs): thermophilic vs. mesophilic regimes. Environ. Eng. Res. 21(1), 69–73 (2016)Google Scholar
  18. 18.
    Jo, S.-H., Kim, K.-H., Jeon, B.-H., Lee, M.-H., Kim, Y.-H., Kim, B.-W., Cho, S.-B., Hwang, O.-H., Bhattacharya, S.S.: Odor characterization from barns and slurry treatment facilities at a commercial swine facility in South Korea. Atmos. Environ. 119, 339–347 (2015)Google Scholar
  19. 19.
    Iacovidou, E., Ohandja, D.-G., Voulvoulis, N.: Food waste co-digestion with sewage sludge—Realising its potential in the UK. J. Environ. Manag. 112(0), 267–274 (2012)Google Scholar
  20. 20.
    Luostarinen, S., Luste, S., Sillanpää, M.: Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresour. Technol. 100(1), 79–85 (2009)Google Scholar
  21. 21.
    Krupp, M., Schubert, J., Widmann, R.: Feasibility study for co-digestion of sewage sludge with OFMSW on two wastewater treatment plants in Germany. Waste Manage. (Oxford) 25(4), 393–399 (2005)Google Scholar
  22. 22.
    Hamzawi, N., Kennedy, K.J., McLean, D.D.: Technical feasibility of anaerobic Co-digestion of sewage sludge and municipal solid waste. Environ. Technol. 19(10), 993–1003 (1998)Google Scholar
  23. 23.
    Lo, H.M., Kurniawan, T.A., Sillanpää, M.E.T., Pai, T.Y., Chiang, C.F., Chao, K.P., Liu, M.H., Chuang, S.H., Banks, C.J., Wang, S.C., Lin, K.C., Lin, C.Y., Liu, W.F., Cheng, P.H., Chen, C.K., Chiu, H.Y., Wu, H.Y.: Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresour. Technol. 101(16), 6329–6335 (2010)Google Scholar
  24. 24.
    Yuan, H., Guan, R., Li, X., Zhu, C., Wachemo, A.C., Zou, D.: Investigation of anaerobic digestion performance and system stability of CaO-ultrasonic pretreated dewatered activated sludge. Waste Biomass Valoriz. (2018)Google Scholar
  25. 25.
    Cheng, J., Ding, L., Lin, R., Yue, L., Liu, J., Zhou, J., Cen, K.: Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: effects of physiochemical properties and mix ratios on fermentation performance. Appl. Energ. 184, 1–8 (2016)Google Scholar
  26. 26.
    Aylin Alagöz, B., Yenigün, O., Erdinçler, A.: Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment. Waste Manag. (Oxf.) 46, 182–188 (2015)Google Scholar
  27. 27.
    Dereli, R.K., Ersahin, M.E., Gomec, C.Y., Ozturk, I., Ozdemir, O.: Co-digestion of the organic fraction of municipal solid waste with primary sludge at a municipal wastewater treatment plant in Turkey. Waste Manag. Res. 28(5), 404–410 (2010)Google Scholar
  28. 28.
    Zhang, W., Wei, Q., Wu, S., Qi, D., Li, W., Zuo, Z., Dong, R.: Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl. Energ. 128, 175–183 (2014)Google Scholar
  29. 29.
    Maragkaki, A.E., Vasileiadis, I., Fountoulakis, M., Kyriakou, A., Lasaridi, K., Manios, T.: Improving biogas production from anaerobic co-digestion of sewage sludge with a thermal dried mixture of food waste, cheese whey and olive mill wastewater. Waste Manag. (Oxf.) 71, 644–651 (2018)Google Scholar
  30. 30.
    Angelidaki, I., Ellegaard, L.: Codigestion of manure and organic wastes in centralized biogas plants. Appl. Biochem. Biotechnol. 109(1), 95–105 (2003)Google Scholar
  31. 31.
    Marañón, E., Castrillón, L., Quiroga, G., Fernández-Nava, Y., Gómez, L., García, M.M.: Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. (Oxf.) 32(10), 1821–1825 (2012)Google Scholar
  32. 32.
    Quiroga, G., Castrillón, L., Fernández-Nava, Y., Marañón, E., Negral, L., Rodríguez-Iglesias, J., Ormaechea, P.: Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge. Bioresour. Technol. 154, 74–79 (2014)Google Scholar
  33. 33.
    Box, G., Draper, N.: Empirical model-building and response surface. Wiley, New York (1986)zbMATHGoogle Scholar
  34. 34.
    Draper, N.R.: Center points in second-order response surface designs. Technometrics 24(2), 127–133 (1982)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Park, J.-H., Yoon, J.-J., Park, H.-D., Kim, Y.J., Lim, D.J., Kim, S.-H.: Feasibility of biohydrogen production from Gelidium amansii. Int. J. Hydrogen Energy 36(21), 13997–14003 (2011)Google Scholar
  36. 36.
    Eaton, A.D., Franson, M.A.H., Association, A.P.H., Association, A.W.W., Federation, W.E.: Standard Methods for the Examination of Water & Wastewater. American Public Health Association, Washington, DC (2005)Google Scholar
  37. 37.
    Le Hyaric, R., Chardin, C., Benbelkacem, H., Bollon, J., Bayard, R., Escudié, R., Buffière, P.: Influence of substrate concentration and moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate spiked with propionate. Bioresour. Technol. 102(2), 822–827 (2011)Google Scholar
  38. 38.
    Wang, W., Xie, L., Chen, J., Luo, G., Zhou, Q.: Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition. Bioresour. Technol. 102(4), 3833–3839 (2011)Google Scholar
  39. 39.
    Ponsá, S., Gea, T., Sánchez, A.: Anaerobic co-digestion of the organic fraction of municipal solid waste with several pure organic co-substrates. Biosyst. Eng. 108(4), 352–360 (2011)Google Scholar
  40. 40.
    Hobbs, S.R., Landis, A.E., Rittmann, B.E., Young, M.N., Parameswaran, P.: Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Manag. (Oxf.) 71, 612–617 (2018)Google Scholar
  41. 41.
    Lyberatos, G., Skiadas, I.: Modelling of anaerobic digestion: a review. Global NEST Int. J. 1(2), 63–76 (1999)Google Scholar
  42. 42.
    Martinez-Garcia, G., Johnson, A.C., Bachmann, R.T., Williams, C.J., Burgoyne, A., Edyvean, R.G.J.: Two-stage biological treatment of olive mill wastewater with whey as co-substrate. Int. Biodeterior. Biodegrad. 59(4), 273–282 (2007)Google Scholar
  43. 43.
    Murto, M., Björnsson, L., Mattiasson, B.: Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J. Environ. Manag. 70(2), 101–107 (2004)Google Scholar
  44. 44.
    Zhang, L., Lee, Y.-W., Jahng, D.: Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresour. Technol. 102(8), 5048–5059 (2011)Google Scholar
  45. 45.
    Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 129(0), 170–176 (2013)Google Scholar
  46. 46.
    Yong, Z., Dong, Y., Zhang, X., Tan, T.: Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy 78, 527–530 (2015)Google Scholar
  47. 47.
    Olsson, J., Feng, X.M., Ascue, J., Gentili, F.G., Shabiimam, M.A., Nehrenheim, E., Thorin, E.: Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment. Bioresour. Technol. 171, 203–210 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Energy EngineeringGyeongnam National University of Science and TechnologyJinjuRepublic of Korea
  2. 2.School of Civil and Environmental EngineeringKumoh National Institute of TechnologyGumiRepublic of Korea
  3. 3.Department of Civil and Environmental EngineeringKAISTDaejeonRepublic of Korea
  4. 4.School of Civil and Environmental EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations