Advertisement

A Comparative Study on the Pozzolanic Activity Between Bamboo Leaves Ash and Silica Fume: Kinetic Parameters

  • Ernesto Villar-CociñaEmail author
  • Loic Rodier
  • Holmer SavastanoJr
  • Manuel Lefrán
  • Moisés Frías Rojas
Original Paper
  • 16 Downloads

Abstract

Silica fume is the most performing siliceous product among the pozzolanic materials. This is mainly related to his high content (around of 90%) of amorphous silica. However, this residue has a high cost and the quantities available are limited. This limits its use in the modern construction industry, particularly in developing countries. For this reason it is motivating to look for an alternative to replace it with other waste materials with similar behavior, especially in these countries. It is known that bamboo leaf ash (BLAsh) is a pozzolan with high reactivity, possessing a high amount of amorphous silica. The paper presents a qualitative and quantitative characterization of the pozzolanic reactivity of bamboo leaf ash (BLAsh) and silica fume (SF). The pozzolanic activity is evaluated by using a conductometric method. In this method the electrical conductivity in a BLAsh/Ca(OH)2 and SF/Ca(OH)2 solution is measured with the reaction time. Latter, a kinetic-diffusive model is applied which allows computing the kinetic parameters of the pozzolanic reaction. The values of these parameters, specifically the reaction rate constant, characterize the reacting process and allow evaluating quantitatively the pozzolanic activity of these materials. The application of other experimental techniques employed in this research [X-ray diffraction (XRD) and scanning electron microscopy (SEM)], support the results coming from the conductometric method. The results show that BLAsh and SF are formed fundamentally by amorphous silica with a high pozzolanic activity. The comparison of BLAsh with SF allows concluding that both have a similar reactivity with reaction rate constant of 4.78 × 10−1 and 5.11 × 10−1 h−1 respectively. This fact reveals the importance of this agricultural residue for their use in the manufacture of blended cements.

Keywords

Materials characterization Pozzolanic activity Bamboo leaf ash Kinetic parameters Silica fume 

Notes

Acknowledgements

The authors thank CNPq (Process No. 313782/2013-0, Project PVE), CNPq (ref: 306386/2013-5). FAPESP (Process No. 2018/10719-6) for its financial support and the Collaboration Agreement between IETcc/CSIC (Spain) and FZEA/USP (Brazil) (ref: 2013040043).

References

  1. 1.
    Massazza, F.: Pozzolana and pozzolanic cements. In: Hewlett, P.C. (ed.) Lea’s chemistry of cement and concrete, 4th edn. Elsevier Ltd., London (1998)Google Scholar
  2. 2.
    Aprianti, E., Shafigh, S., Bahri, P., Farahani, J.N.: Supplementary cementitious materials origin from agricultural wastes—a review. Constr. Build. Mater 74, 176–187 (2015)CrossRefGoogle Scholar
  3. 3.
    Malhotra, V.M.: Role of supplementary cementing materials in reducing greenhouse gas emissions. In: Gjorv, O.E., Sakai, K. (eds.) Concrete technology for a sustainable development in the 21st century, pp. 226–235. E&FN Spon, London (2000)Google Scholar
  4. 4.
    Lilkov, V., Rostovsky, I., Petrov, O., Tzanetanova, Y., Savov, P.: Long term study of hardened cement pastes containing silica fume and fly ash. Constr Build Mater. 60, 48–56 (2014)CrossRefGoogle Scholar
  5. 5.
    European Standard EN 197-1: Composition, specifications and conformity criteria for common cements (2011)Google Scholar
  6. 6.
    Khayat, K.H., Aitcin, P.C.: Silica fume in concrete—an overview. In: Malhotra V.M. (ed.). Fourth International Conference on Fly ash, Silica Fume, Slag and Natural Pozzolans in Concrete, vol. I, ACI, SP-132, Istambul, Turkey, (1992)Google Scholar
  7. 7.
    Sánchez de Rojas, M.I., Frías, M.: The pozzolanic activity of different materials, its influence on the hydration heat in mortars. Cem. Concr. Res. 26, 203–213 (1996)CrossRefGoogle Scholar
  8. 8.
    Collepardi, M., Olagot, O.J.J., Troli, R., Simonelli, F., Collepardi, S.: Combination of silica fume, fly ash and amorphous nano-silica in superplasticized high-performance concretes. In: Proceedings of VII AIMAT Congress. Ancona, Italy (2004)Google Scholar
  9. 9.
    Ordóñez, L.M., Payá, J., Coats, A.M., Glasser, F.P.: Reaction of rice husk ash with OPC and portlandite. Adv Cem. Res. 14, 113–119 (2002)CrossRefGoogle Scholar
  10. 10.
    Al-Akhras, N., Abu-Alfoul, B.: Effect of wheat straw ash on mechanical properties of autoclaved mortar. Cem. Concr. Res. 32, 859–863 (2002)CrossRefGoogle Scholar
  11. 11.
    Cook, D.J., Suwanvitaya, P.: Properties and behaviour of lime-rice husk ash cements. In: Malhotra, V.M. (ed.) Fly ash, silica fume, slag, and other mineral by-products in concrete SP-79, pp. 831–846. American Concrete Institute, Farmington Hills (1983)Google Scholar
  12. 12.
    Ramaswamy, S.D., Murthy, C.K., Nagaraj, T.S.: Use of waste materials and industrial by-products in concrete construction. In: Swamy, R.N. (ed.) Concrete technology and design: new concrete materials, vol. 1, p. 137. University Press, Surrey (1983)Google Scholar
  13. 13.
    Chandrasekhar, S., Pramada, S.N., Majeed, J.: Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash. J. Mater. Sci. 41, 7926–7933 (2006)CrossRefGoogle Scholar
  14. 14.
    Villar-Cociña, E., Frías, M., Morales, E.V.: Sugar cane wastes as pozzolanic materials: application of mathematical model. ACI Mater. J. 105, 258–264 (2008)Google Scholar
  15. 15.
    Ganesan, K., Rajagopal, K., Thangavel, K.: Evaluation of bagasse ash as supplementary cementitious material. Cem. Concr. Compos. 29, 515–524 (2007)CrossRefGoogle Scholar
  16. 16.
    Morales, E.V., Villar-Cociña, E., Frias, M., Santos, S.F., Savastano, H.: Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): influence in the pozzolanic activation. Cem. Concr. Compos. 31, 22–28 (2009)CrossRefGoogle Scholar
  17. 17.
    Frías, M., Villar-Cociña, E., Valencia-Morales, E.: Characterisation of sugar cane straw waste as pozzolanic material for construction: calcining temperature and kinetic parameters. Waste Manag. 27, 533–538 (2007)CrossRefGoogle Scholar
  18. 18.
    Frías, M., Villar-Cociña, E., Sánchez de Rojas, M.I., Valencia-Morales, E.: The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-clay ash/lime systems: application of a kinetic–diffusive model. Cem. Concr. Res. 35, 2137–2142 (2005)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Payá, J., Monzó, J., Borrachero, M.V., Soriano, L., Akasaki, J.L., Tashima, M.M.: New inorganic binders containing ashes from agricultural wastes. In: Savastano Jr, H., Fiorelli, J., Dos Santos, S.F. (eds.) Sustainable and nonconventional construction materials using inorganic bonded fiber composites, pp. 127–164. Woodhead Publishing, Duxford (2017)CrossRefGoogle Scholar
  21. 21.
    Frías Rojas, M., Sánchez de Rojas, M.I., Medina-Martínez, C., Villar-Cociña, E.: New trends for nonconventional cement-based materials: industrial and agricultural waste. In: Savastano Jr, H., Fiorelli, J., Dos Santos, S.F. (eds.) Sustainable and nonconventional construction materials using inorganic bonded fiber composites, pp. 165–180. Woodhead Publishing, Duxford (2017)CrossRefGoogle Scholar
  22. 22.
    Sudin, R., Swamy, N.: Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J. Mater. Sci. 41, 6917–6924 (2006)CrossRefGoogle Scholar
  23. 23.
    Ghavami, K., Rodrigues, C.S., Paciornik, S.: Bamboo: functionally graded composite material. Asian J. Civil Eng. (building and housing) 4(1), 1–10 (2003)Google Scholar
  24. 24.
    Ghavami, K.: Bamboo as reinforcement in structural concrete elements. Cem. Concr. Compos. 27, 637–649 (2005)CrossRefGoogle Scholar
  25. 25.
    Ghavami, K.: Autoclaved bamboo pulp fibre reinforced cement. Cem. Concr. Compos. 17, 99–106 (1995)CrossRefGoogle Scholar
  26. 26.
    Savastano, H. Jr, Warden, P.G., Coutts, R.S.P.: Potential of alternative fibre cements as building materials for developing areas. Cem. Concr. Compos. 25, 311–319 (2003)CrossRefGoogle Scholar
  27. 27.
    Dwivedi, V.N., Singh, N.P., Dasa, S.S., Singh, N.B.: A new pozzolanic material for cement industry: bamboo leaf ash. Int. J. Phys. Sci. 1, 106–111 (2006)Google Scholar
  28. 28.
    Villar-Cociña, E., Morales, E.V., Santos, S.F., SavastanoJr, H., Frías, M.: Pozzolanic behavior of bamboo leaf ash: characterization and determination of the kinetic parameters. Cem. Concr. Compos. 33, 68–73 (2011)CrossRefGoogle Scholar
  29. 29.
    Frías, M., Savastano, H., Villar, E., Sánchez de Rojas, M.I., Santos, S.F.: Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem. Concr. Compos. 34, 1019–1023 (2012)CrossRefGoogle Scholar
  30. 30.
    Asha, P., Salman, A., Arun Kumar, R.: Experimental study on concrete with bamboo leaf ash. Int. J. Eng. Adv. Technol. 3, 2249–8958 (2014)Google Scholar
  31. 31.
    Umoh, A.A., Odesola, I.: Characteristics of bamboo leaf ash blended cement paste and mortar. Civil Eng. Dimens. 17, 22–28 (2015)Google Scholar
  32. 32.
    Singh, N.B., Das, S.S., Singh, N.P., Dwivedi, V.N.: Hydration of bamboo leaf ash blended Portland cement. Indian J. Eng. Mater. Sci. 14, 69–76 (2007)Google Scholar
  33. 33.
    Roselló, J., Soriano, L., Santamarina, M., Akasaki, J., Melges, J., Payá, J.: Microscopy characterization of silica-rich agrowastes to be used in cement binders: bamboo and sugarcane leaves. Microsc. Microanal. 21(5), 1314–1326 (2015)CrossRefGoogle Scholar
  34. 34.
    Utodio, N.F., Ekandem, E.S., Egege, C.C., Ocholi, M., Atakpu, O.D, Nwaigwe D.N.: Investigation of the effect of bamboo leaf ash blended cement on engineering properties of lateritic blocks. J. Sustain. Dev. Stud. 8, 193–208 (2015)Google Scholar
  35. 35.
    Olutoge, F.A., Oladunmoye, O.M.: Bamboo leaf ash as supplementary cementitious material. Am. J. Eng. Res. 14(6), 1–8 (2017)Google Scholar
  36. 36.
    Villar-Cociña, E., Valencia-Morales, E., González-Rodríguez, R., Hernández-Ruíz, J.: Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: a kinetic–diffusive model. Cem. Concr. Res. 33, 517–524 (2003)CrossRefGoogle Scholar
  37. 37.
    Villar-Cociña, E., Frías, M., Valencia-Morales, E., Savastano, H.: Study of the pozzolanic reaction kinetics in sugar cane bagasse–clay ash/calcium hydroxide system: kinetic parameters and pozzolanic activity. Adv. Cem. Res 21, 23–30 (2009)CrossRefGoogle Scholar
  38. 38.
    Villar Cociña, E., Savastano, H., Rodier, L., Lefran, M., Frías, M.: Pozzolanic characterization of cuban bamboo leaf ash: calcining temperature and kinetic parameters. Waste Biomass Valor 9, 691–699 (2018)CrossRefGoogle Scholar
  39. 39.
    ASTM.: Standard test methods for sampling and testing fly ash or natural pozzolans for use in Portland-cement concrete (2005)Google Scholar
  40. 40.
    BS EN: British Standard Euronorm 196.: Methods of testing cement. Part 5: pozzolanicity test for pozzolanic cement (2005)Google Scholar
  41. 41.
    Rassk, E., Bhaskar, M.C.: Pozzolanic activity of pulverized fuel ash. Cem. Concr. Res. 5, 363–376 (1975)CrossRefGoogle Scholar
  42. 42.
    Luxán, M.P., Madruga, F., Saavedra, J.: Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem. Concr. Res. 19, 63–68 (1989)CrossRefGoogle Scholar
  43. 43.
    Payá, J., Borrachero, M.V., Monzó, J., Peris-Mora, E., Amahjour, F.: Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cem. Concr. Res. 31, 41–49 (2001)CrossRefGoogle Scholar
  44. 44.
    Tashima, M.M., Soriano, L., Monzó, J., Borrachero, M.V., Akasaki, J.L., Payá, J.: New method to assess the pozzolanic reactivity of mineral admixtures by means of pH and electrical conductivity measurements in lime: pozzolan suspensions. Mater. Const. 64, 316 (2014).  https://doi.org/10.3989/mc.2014.00914 CrossRefGoogle Scholar
  45. 45.
    Villar-Cociña, E., Frias, M., Valencia-Morales, E., Sánchez de Rojas, M.I.: An evaluation of different kinetic models for determining the kinetic coefficients in sugar cane straw–clay ash/lime system. Adv. Cem. Res. 18, 17–26 (2006)CrossRefGoogle Scholar
  46. 46.
    Sinthaworn, S., Nimityongskul, P.: Quick monitoring of pozzolanic reactivity of waste ashes. Waste Manag. 29, 1526–1531 (2009)CrossRefGoogle Scholar
  47. 47.
    Li, J., Geng, G., Myers, R., Yu, Y.S., Shapiro, D., Carraro, C., Maboudian, R., Monteiro, P.: The chemistry and structure of calcium (alumino) silicate hydrate: a study by XANES, ptychographic imaging, and wide- and small-angle scattering. Cem. Concr. Res. 115, 367–368 (2018)CrossRefGoogle Scholar
  48. 48.
    Geng, G., Myers, R., Maboudian, R., Carraro, C., Shapiro, D., Monteiro, P.: Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate. Sci. Rep. 7, 44032 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ernesto Villar-Cociña
    • 1
    Email author
  • Loic Rodier
    • 2
  • Holmer SavastanoJr
    • 2
  • Manuel Lefrán
    • 1
  • Moisés Frías Rojas
    • 3
  1. 1.Department of PhysicsCentral University of Las VillasSanta ClaraCuba
  2. 2.University of Sao PauloPirassunungaBrazil
  3. 3.Eduardo Torroja Institute (CSIC)MadridSpain

Personalised recommendations