Recovery of Expired Lithium Carbonate Tablets for LiFePO4/C Cathode

  • Hongying HouEmail author
  • Dongdong Li
  • Xianxi LiuEmail author
  • Yuan Yao
  • Zhipeng Dai
  • Chengyi Yu
Original Paper


Various medicines may be overdue and invalid due to the untimely consumption. Herein, in order to reduce the resource waste and the environmental emission, expired lithium carbonate tablets were recycled in the form of LiFePO4/C powders via high temperature solid state reaction with the recovery of 85.8%. The obtained LiFePO4/C powders were investigated in terms of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), tap density measurement, electronic conductivity measurement, galvanostatic charge/discharge and cyclic voltammetry (CV). As expected, LiFePO4/C powders appeared as many nanoparticles with the particle size of about 300–700 nm. Furthermore, LiFePO4/C cathode maintained the reversible specific discharge capacity above 106.7 mAh/g at 2C for 400 cycles. The satisfactory results indicated high feasibility and provided a promising strategy to recycle the expired lithium carbonate tablets. Additionally, the techno-economic analysis of recovering the expired lithium carbonate tablets was performed, and the result indicated that the recycling cost of expired lithium carbonate tablets was much cheaper than that of commercial LiCO3 feedstock.


Expired lithium carbonate tablets Solid state reaction LiFePO4/C cathode Resource recovery Circular economy 



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51566006 and 51363011), the 46th Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry in China (Grant No. 6488-20130039), the Program of High-level Introduced Talent of Yunnan Province (Grant No. 10978125), the 19th Young Academic and Technical Leaders of Yunnan Province (Grant No. 1097-10978240).


  1. 1.
    Ryu, V., Kook, S., Lee, S.J., Ha, K., Cho, H.S.: Effects of emotional stimuli on time perception in manic and euthymic patients with bipolar disorder. Prog. Neuro–Psychoph. 56, 39–45 (2015)CrossRefGoogle Scholar
  2. 2.
    Kalelioglua, T., Gencb, A., Karamustafalioglua, N., Emul, M.: Assessment of cardiovascular risk via atherogenic indices in patients with bipolar disorder manic episode and alterations with treatment. Diabetes Metab. Syndr. 11, 473–475 (2017)CrossRefGoogle Scholar
  3. 3.
    Corrado, A., Walsh, J.: Mechanisms underlying the benefits of anticonvulsants over lithium in the treatment of bipolar disorder. Neuroreport 27, 131–135 (2016)CrossRefGoogle Scholar
  4. 4.
    Baldessarini, R.J., Tondo, L., Hennen, J., Viguera, A.C.: Is lithium still worth using? An update of selected recent research. Harvard Rev. Psychiat. 10, 59–75 (2002)CrossRefGoogle Scholar
  5. 5.
    Montagnon, F., Saïd, S., Lepine, J.P.: Lithium: poisonings and suicide prevention. Eur. Psychiat. 17, 92–95 (2002)CrossRefGoogle Scholar
  6. 6.
    Moore, J.A.: An assessment of lithium using the iehr evaluation process for assessing human developmental and reproductive toxicity of agents. Reprod. Toxicol. 9, 175–210 (1995)CrossRefGoogle Scholar
  7. 7.
    Hou, H., Dai, Z., Liu, X., Yao, Y., Liao, Q., Yu, C., Li, D.: Reutilization of the expired tetracycline for lithium ion battery anode. Sci. Total Environ. 630, 495–501 (2018)CrossRefGoogle Scholar
  8. 8.
    Bound, J.P., Voulvoulis, N.: Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environ. Health Perspect. 113, 1705–1711 (2005)CrossRefGoogle Scholar
  9. 9.
    Loizidou, M.: Waste valorization and management. Waste Biomass Valor. 7, 645–648 (2016)CrossRefGoogle Scholar
  10. 10.
    Itzhaki, Z.B., Berman, T., Grotto, I., Schwartzberg, E.: Household medical waste disposal policy in Israel. Isr. J. Health Policy 5, 48–55 (2016)CrossRefGoogle Scholar
  11. 11.
    Dai, Z., Hou, H., Liu, X., Yao, Y., Liao, Q., Yu, C., Li, D.: Feasibility of expired waste aspirin for use as lithium-ion battery anode. Waste Biomass Valor. (2018). Google Scholar
  12. 12.
    Mangialardi, T., Paolini, A.E., Polettini, A., Sirini, P.: Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. J. Hazard. Mater. 70, 53–70 (1999)CrossRefGoogle Scholar
  13. 13.
    Medvescek, S., Venceslav, K., Meden, A.: Influence of various soluble carbonates on the hydration of portland cement studied by X-ray diffraction. Acta Chim. Slov. 64, 381–396 (2017)CrossRefGoogle Scholar
  14. 14.
    Aral, H., Vecchio-Sadus, A.: Lithium: environmental pollution and health effects. Encycl. Environ. Health. (2011). Google Scholar
  15. 15.
    Robinson, B.H., Yalamanchali, R., Reiser, R., Dickinson, N.M.: Lithium as an emerging environmental contaminant: mobility in the soil-plant system. Chemosphere 197, 1–6 (2018)CrossRefGoogle Scholar
  16. 16.
    Aral, H., Vecchio-Sadus, A.: Toxicity of lithium to humans and the environment—a literature review. Ecotox. Environ. Safe. 70, 349–356 (2008)CrossRefGoogle Scholar
  17. 17.
    Gao, Q., Liu, Y., Li, H., Chen, H., Chai, Y., Lu, F.: Comparison of several chemometric methods of libraries and classifiers for the analysis of expired drugs based on Raman spectra. J. Pharm. Biomed. Anal. 94, 58–64 (2014)CrossRefGoogle Scholar
  18. 18.
    Yuan, B., Wang, J., Cai, W., Yang, Y., Yi, M., Xiang, L.: Effects of temperature on conversion of Li2CO3 to LiOH in Ca(OH)2 suspension. Particuology 34, 97–102 (2017)CrossRefGoogle Scholar
  19. 19.
    Lu, Y., Liu, Y., Zhou, C., Luo, G.: Preparation of Li2CO3 nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor. Ind. Eng. Chem. Res. 53, 11015–11020 (2014)CrossRefGoogle Scholar
  20. 20.
    Jin, B., Gu, H.: Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ion. 178, 1907–1914 (2008)CrossRefGoogle Scholar
  21. 21.
    Cho, Y., Fey, T., Kao, H.: The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J. Power Sources 189, 256–262 (2010)CrossRefGoogle Scholar
  22. 22.
    Liang, G., Wang, L., Ou, X., Zhao, X., Xu, S.: Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution. J. Power Sources 184, 538–542 (2008)CrossRefGoogle Scholar
  23. 23.
    Xu, D., Wang, P., Shen, B.: Synthesis and characterization of sulfur-doped carbon decorated LiFePO4 nanocomposite as high performance cathode material for lithium-ion batteries. Ceram. Int. 42, 5331–5338 (2016)CrossRefGoogle Scholar
  24. 24.
    Du, X., MacNaughtan, B., Mitchell, J.R.: Quantification of amorphous content in starch granules. Food Chem. 127, 188–191 (2011)CrossRefGoogle Scholar
  25. 25.
    Ohwoavworhua, F.O., Adelakun, T.A.: Phosphoric acid-mediated depolymerization and decrystallization of α-cellulose obtained from corn cob: preparation of low crystallinity cellulose and some physicochemical properties. Trop. J. Pharm. Res. 4, 509–516 (2005)Google Scholar
  26. 26.
    Liu, A., Liu, Y., Hu, Z., Gao, G., Xu, Y., Lei, L.: Electrochemical performance of LiFePO4/C synthesized by solid state reaction using different lithium and iron sources. J. Phys. Chem. Solids 72, 831–835 (2011)CrossRefGoogle Scholar
  27. 27.
    Yang, X., Liu, D., Xu, X., He, X., Xie, J.: Mechanism and kinetic studies on the synthesis of LiFePO4 via solid-state reactions. CrystEngComm 15, 10648–10656 (2013)CrossRefGoogle Scholar
  28. 28.
    Ou, X., Liang, G., Liang, J., Xu, S., Zhao, X.: LiFePO4 doped with magnesium prepared by hydrothermal reaction in glucose solution. Chin. Chem. Lett. 19, 345–349 (2008)CrossRefGoogle Scholar
  29. 29.
    Yang, K., Deng, Z., Suo, J.: Synthesis and characterization of LiFePO4 and LiFePO4/C cathode material from lithium carboxylic acid and Fe3+. J. Power Sources 201, 274–279 (2012)CrossRefGoogle Scholar
  30. 30.
    Athanassioua, M., Zabaniotou, A.: Techno-economic assessment of recycling practices of municipal solid wastes in Cyprus. J. Clean. Prod. 16, 1474–1483 (2008)CrossRefGoogle Scholar
  31. 31.
    Caputo, A.C., Palumbo, M., Pelagagge, P.M., Scacchia, F.: Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass Bioenergy 28, 35–51 (2005)CrossRefGoogle Scholar
  32. 32.
    Vasquez, S.L., Lara, E., Mora, I.A., Cardenas, L.G., Vasquez, Y.A., Ferrino, P.C., Cabrera, M.A., Barranco, P.: An analysis of unused and expired medications in Mexican households. Int. J. Clin. Pharm. 37, 121–126 (2015)CrossRefGoogle Scholar
  33. 33.
    Arora, A., Banerjee, J., Vijayaraghavan, R., MacFarlaneb, D., Patti, A.F.: Process design and techno-economic analysis of an integrated mango processing waste biorefinery. Ind. Crop. Prod. 116, 24–34 (2018)CrossRefGoogle Scholar
  34. 34.
    Simic, V., Dimitrijevic, B.: Production planning for vehicle recycling factories in the EU legislative and global business environments. Resour. Conserv. Recycl. 60, 78–88 (2012)CrossRefGoogle Scholar
  35. 35.
    Han, W., Liu, Z., Fang, J., Huang, J., Zhao, H., Li, Y.: Techno-economic analysis of dark fermentative hydrogen production from molasses in a continuous mixed immobilized sludge reactor. J. Clean. Prod. 127, 567–572 (2016)CrossRefGoogle Scholar
  36. 36.
    Dimou, C., Vlysidis, A., Kopsahelis, N., Papanikolaou, S., Koutinas, A., Kookos, I.K.: Techno-economic evaluation of wine lees refining for the production of value-added products. Biochem. Eng. J. 116, 157–165 (2016)CrossRefGoogle Scholar
  37. 37.
    Reyniers, P.A., Vandewalle, L.A., Saerens, S., Smedt, P., Marin, G.B., Van Geem, K.M.: Techno-economic analysis of an absorption based methanol to olefins recovery section. Appl. Therm. Eng. 115, 477–490 (2017)CrossRefGoogle Scholar
  38. 38.
    Lam, K., Leung, C.C., Lei, H., Lin, C.S.: Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes. Food Bioprod. Process. 9 2, 282–290 (2014)CrossRefGoogle Scholar
  39. 39.
    Murray, R.E., Jenne, S., Snowberg, D., Berry, D., Cousins, D.: Techno–economic analysis of a megawatt-scale thermoplastic resin wind turbine blade. Renew. Energy 131, 111–119 (2019)CrossRefGoogle Scholar
  40. 40.
    Hasanly, A., Talkhoncheh, M.,·Alavijeh, M.: Techno–economic assessment of bioethanol production from wheat straw: a case study of Iran. Clean Technol. Envir. 20, 357–377 (2018)CrossRefGoogle Scholar
  41. 41.
    Martin, G., Rentsch, L., Höck, M., Bertau, M.: Lithium market research—global supply, future demand and price development. Energy Storage Mater. 6, 171–179 (2017)CrossRefGoogle Scholar
  42. 42.
    Cristóbal, J., Caldeira, C., Corrado, S., Sala, S.: Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresour. Technol 259, 244–252 (2018)CrossRefGoogle Scholar
  43. 43.
    Chang, Y.C., Peng, C.T., Hung, I.M.: Effects of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method. J. Mater. Sci. 49, 6907–6916 (2014)CrossRefGoogle Scholar
  44. 44.
    Gao, Y., Li, L., Peng, H., Wei, Z.: Surfactant-assisted sol-gel synthesis of nanostructured ruthenium-doped lithium iron phosphate as a cathode for lithium-ion batteries. ChemElectroChem 1, 2146–2152 (2015)CrossRefGoogle Scholar
  45. 45.
    Sadeghi, B., Sarraf-Mamoory, R., Shahverdi, H.R.: Surface modification of LiMn2O4 for lithium batteries by nanostructured LiFePO4 Phosphate. J. Nanomater. 1, 5833–5845 (2012)Google Scholar
  46. 46.
    Liu, J., Wang, J., Yan, X., Zhang, X., Yang, G., Jalbout, A., Wang, R.: Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications. Electrochim. Acta 54, 5656–5659 (2009)CrossRefGoogle Scholar
  47. 47.
    Zhong, S., Wu, L., Zheng, J., Liu, J.: Preparation of high tap-density 9LiFePO4·Li3V2(PO4)3/C composite cathode material by spray drying and post-calcining method. Powder Technol. 219, 45–48 (2012)CrossRefGoogle Scholar
  48. 48.
    Dai, D., Wang, B., Li, B., Li, F., Wang, X., Tang, H., Chang, Z.: Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived from transition metal carbonate with a micro–nanostructure as a cathode material for high-performance Li-ion batteries. RSC Adv. 6, 96714–96720 (2016)CrossRefGoogle Scholar
  49. 49.
    Yang, X., Tu, J., Lei, M., Zuo, Z., Wua, B., Zhou, H.: Selection of carbon sources for enhancing 3D conductivity in the secondary structure of LiFePO4/C cathode. Electrochim. Acta 193, 206–215 (2016)CrossRefGoogle Scholar
  50. 50.
    Qin, G., Wu, Q., Zhao, J., Ma, Q., Wang, C.: C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries. J. Power Sources 248, 588–595 (2014)CrossRefGoogle Scholar
  51. 51.
    Lu, F., Zhou, Y., Liu, J., Pan, Y.: Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route. Electrochim. Acta 56, 8833–8838 (2011)CrossRefGoogle Scholar
  52. 52.
    Huang, Y., Zheng, F., Zhang, X., Li, Y., Yin, J., Li, Q.: Tween40 surfactant effect on the formation of nano-sized LiFePO4/C powder via a solid state reaction and their cathode properties. Solid State Ion. 249, 158–164 (2013)CrossRefGoogle Scholar
  53. 53.
    Yang, X., Hua, Z., Liang, J.: Effects of sodium and vanadium co-doping on the structure and electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries. Ceram. Int. 41, 2863–2868 (2015)CrossRefGoogle Scholar
  54. 54.
    Gong, H., Xue, H., Wang, T., He, J.: In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries. J. Power Sources 318, 220–227 (2016)CrossRefGoogle Scholar
  55. 55.
    Li, X., Jiang, Y.Z., Li, X.K., Jiang, H.X., Liu, J.L., Feng, J., Lin, S.B., Guan, X.: Electrochemical property of LiFePO4/C composite cathode with different carbon sources. Rare Met. 4, 1–7 (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Material Science and EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.Faculty of Mechanical and Electronic EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations