Advertisement

The Antioxidant and Enzyme Inhibitory Activity of Balsam Fir (Abies balsamea (L.) Mill.) Bark Solvent Extracts and Pyrolysis Oil

  • Zhiling Wang
  • Luis A. Cáceres
  • Mohammad M. Hossain
  • Saoussen Ben Abdallah
  • Osariemen Ogbeide
  • Zengyu Yao
  • Justin B. Renaud
  • Ian M. ScottEmail author
Original Paper
  • 24 Downloads

Abstract

Wood waste from forestry practices offers an inexpensive source of biomass that can be converted into bioenergy, fuels and value-added chemicals. Balsam fir (Abies balsamea (L.) Mill.) bark offers a source of bioactive natural products, such as lignans, separated through solvent extraction (SE). The objectives of the research were: (1) to compare traditional solvent with supercritical fluid extraction (SFE) and slow pyrolysis processes to separate and convert chemicals from the bark and (2) to assess the biological activity of the extracts and pyrolysis oils. In vitro biochemical assays were used to measure antioxidant and oxygen radical-scavenging abilities, and glutathione S-transferase and esterase enzyme inhibition. The pyrolysis oil had similar anti-oxidant, radical-scavenging ability and enzyme inhibitory activity to the SE and SFE extracts. Fractionation and mass spectrometry identified catechol and p-coumaryl alcohol in the organic phase of pyrolysis oil. The small phenolic compounds identified offer starting materials for pharmaceutical or insecticide synergist application.

Keywords

Abies balsamea (L.) Mill. Solvent extraction Supercritical fluid extraction Pyrolysis Glutathione S-transferase inhibition Esterase inhibition Antioxidant activity 

Abbreviations

SE

Solvent extraction

SFE

Supercritical fluid extraction

RPO

Raw pyrolysis oil

GST

Glutathione S-transferase

MAO

Monoamine oxidase

GAD

Glutamic acid decarboxylase

MFR

Mechanically fluidized reactor

CPB

Colorado potato beetle

DEF

S, S, S-tributyl phosphorotrithioate

DCM

Dichloromethane

DEM

Diethyl maleate

DPPH

1, 1-diphenyl-2-picrylhydrazyl radical

α-NA

α-naphthyl acetate

CDNB

1-chloro-2, 4-dinitrobenzene

Notes

Acknowledgements

We recognize the technical support from Dr. Paul A. Charpentier, Western University, supercritical fluid extraction,Tim McDowell, AAFC London, GC-MS analysis and Igor Lalin, AAFC London, CPB rearing. We also thank Dr. John T. Arnason, University of Ottawa, for providing the plant material. This research was partially supported by funding from the China Scholarship Council (CSC), the National Natural Science Foundation of China (No. 31470630), the Science and Technology Innovation from ShanXi Agriculture University (2016YJ14) and Agriculture and Agri-Food Canada.

References

  1. 1.
    Fraser, M.H., Cuerrier, A., Haddad, P.S., Arnason, J.T., Owen, P.L., Johns, T.: Medicinal plants of Cree communities (Québec, Canada): anztioxidant activity of plants used to treat type 2 diabetes symptoms. Can. J. Physiol. Pharmacol. 85(11), 1200–1214 (2007)CrossRefGoogle Scholar
  2. 2.
    Waye, A., Annal, M., Tang, A., Picard, G., Harnois, F., Guerrero-Analco, J.A., Saleem, A., Hewitt, L.M., Milestone, C.B., MacLatchy, D.L., Trudeau, V.L., Arnason, J.T.: Canadian boreal pulp and paper feedstocks contain neuroactive substances that interact in vitro with GABA and dopaminergic systems in the brain. Sci. Total Environ. 468, 315–325 (2014)CrossRefGoogle Scholar
  3. 3.
    Wang, Z., Zhao, Z., Abou-Zaid, M.M., Arnason, J.T., Liu, R., Walshe-Roussel, B., Waye, A., Liu, S., Saleem, A., Cáceres, L.A., Wei, Q., Scott, I.M.: Inhibition of insect glutathione S-transferase (GST) by conifer extracts. Arch. Insect Biochem. Physiol 87(4), 234–249 (2014)CrossRefGoogle Scholar
  4. 4.
    Wang, Z., Zhao, Z., Cheng, X., Liu, S., Wei, Q., Scott: I. M. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pestic. Biochem. Physiol. 127, 1–7 (2016)CrossRefGoogle Scholar
  5. 5.
    Hossain, M.M., Scott, I.M., McGarvey, B.D., Conn, K., Ferrante, L., Berruti, F., Briens, C.: Insecticidal and anti-microbial activity of bio-oil derived from fast pyrolysis of lignin, cellulose, and hemicellulose. J. Pest Sci. 88(1), 171–179 (2015)CrossRefGoogle Scholar
  6. 6.
    Mullen, C.A., Boateng, A.A.: Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy Fuels 22(3), 2104–2109 (2008)CrossRefGoogle Scholar
  7. 7.
    Booker, C.J., Bedmutha, R., Vogel, T., Gloor, A., Xu, R., Ferrante, L., Yeung, K.K.C., Scott, I.M., Conn, K.L., Berruti, F., Briens, C.: Experimental investigations into the insecticidal, fungicidal, and bactericidal properties of pyrolysis oil from tobacco leaves using a fluidized bed pilot plant. Ind. Eng. Chem. Res. 49(20), 10074–10079 (2010)CrossRefGoogle Scholar
  8. 8.
    Liu, S., Caceres, L., Schieck, K., Booker, C.J., McGarvey, B.M., Yeung, K.K.C., Pariente, S., Briens, C., Berruti, F., Scott, I.M.: Insecticidal activity of bio-oil from the pyrolysis of straw from brassica spp. J. Agric. Food Chem. 62(16), 3610–3618 (2014)CrossRefGoogle Scholar
  9. 9.
    Karaosmanoglu, H., Soyer, F., Ozen, B., Tokatli, F.: Antimicrobial and antioxidant activities of Turkish extra virgin olive oils. J. Agric. Food Chem. 58(14), 8238–8245 (2010)CrossRefGoogle Scholar
  10. 10.
    Burri, J., Graf, M., Lambelet, P., Loliger, J.: Vanillin: more than a flavouring agent—a potent antioxidant. J. Sci. Food Agric. 48(1), 49–56 (2010)CrossRefGoogle Scholar
  11. 11.
    Cooper, R.A.: Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: the active antibacterial component in an enzyme alginogel. Int. Wound J. 10(6), 630–637 (2013)CrossRefGoogle Scholar
  12. 12.
    Ogata, M., Hoshi, M., Shimotohno, K., Urano, S., Endo, T.: Antioxidant activity of magnolol, honokiol, and related phenolic compounds. J. Am. Oil Chem. Soc. 74(5), 557–562 (1997)CrossRefGoogle Scholar
  13. 13.
    Zhang, W.B., Mai, K.S., Xu, W., Liufu, Z.G., Tan, B.P.: Dietary guaiacol improves the growth of juvenile abalone, Haliotis discus hannai Ino. Chin. J. Oceanol. Limnol. 27(4), 697–702 (2009)CrossRefGoogle Scholar
  14. 14.
    Venderbosch, R.H., Prins, W.: Fast pyrolysis technology development. Biofuel Bioprod. Biorefin. 4(2), 178–208 (2010)CrossRefGoogle Scholar
  15. 15.
    Papari, S., Hawboldt, K.: A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew. Sustain. Energy Rev. 52, 1580–1595 (2015)CrossRefGoogle Scholar
  16. 16.
    Hossain, M.M., Scott, I.M., Berruti, F., Briens, C.: Optimizing pyrolysis reactor operating conditions to increase nicotine recovery from tobacco leaves. J. Anal. Appl. Pyrolysis 112, 80–87 (2015)CrossRefGoogle Scholar
  17. 17.
    Bajerová, P., Adam, M., Bajer, T., Ventura, K.: Comparison of various techniques for the extraction and determination of antioxidants in plants. J. Sep. Sci. 37(7), 835–844 (2014)CrossRefGoogle Scholar
  18. 18.
    Dewanto, V., Wu, X.Z., Adom, K.K., Liu, R.H.: Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50(10), 3010–3014 (2002)CrossRefGoogle Scholar
  19. 19.
    Bhat, F.M., Riar, C.S.: Extraction, identification and assessment of antioxidative compounds of bran extracts of traditional rice cultivars: an analytical approach. Food Chem. 237, 264 (2017)CrossRefGoogle Scholar
  20. 20.
    Hatano, T., Kagawa, H., Yasuhara, T., Okuda, T.: Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36(6), 2090–2097 (1988)CrossRefGoogle Scholar
  21. 21.
    Kim, D.O., Jeong, S.W., Lee, C.Y.: Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81(3), 321–326 (2003)CrossRefGoogle Scholar
  22. 22.
    Sun, B., Ricardo-da-Silva, J.M., Spranger, I.: Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 46(10), 4267–4274 (1998)CrossRefGoogle Scholar
  23. 23.
    Suzuki, T., Doi, S., Yamakawa, M., Yamamoto, K., Watanabe, T., Funaki, M.: Recovery of wood preservatives from wood pyrolysis tar by solvent extraction. Holzforschung 51(3), 214–218 (1997)CrossRefGoogle Scholar
  24. 24.
    Oehr, K.H., Mckinely, J. Glyoxal production from biomass pyrolysis derived hydroxy-acetaldehyde. In: Bridgwater, A.V. (ed) Advances in thermochemical biomass conversion, p. 1452. Blackie Academic & Professional, London (1994)Google Scholar
  25. 25.
    Hossain, M.M., Scott, I.M., Berruti, F., Briens, C.: Application of novel pyrolysis reactor technology to concentrate bio-oil components with antioxidant activity from tobacco, tomato and coffee ground biomass. Waste Biomass Valoriz. 9(9), 1607–1617 (2018)CrossRefGoogle Scholar
  26. 26.
    Hossain, M.M., Scott, I.M., Berruti, F., Briens, C.: Application of 1D and 2D MFR reactor technology for the isolation of insecticidal and anti-microbial properties from pyrolysis bio-oils. J. Environ. Sci. Health 51(12), 860–867 (2016)CrossRefGoogle Scholar
  27. 27.
    Kim, J.W., Lee, H.W., Lee, I.G., Jeon, J.K., Ryu, C., Park, S.H., Jung, S.C., Park, Y.K.: Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood. Renew. Energy 65(66), 41–48 (2014)Google Scholar
  28. 28.
    Li, D., Berruti, F., Briens, C.: Autothermal fast pyrolysis of birch bark with partial oxidation in a fluidized bed reactor. Fuel 121(4), 27–38 (2014)CrossRefGoogle Scholar
  29. 29.
    Fagernas, L., Kuoppala, E., Tiilikkala, K., Oasmaa, A.: Chemical composition of birch wood slow pyrolysis products. Energy Fuels 26(2), 1275–1283 (2012)CrossRefGoogle Scholar
  30. 30.
    Patra, J.K., Kim, S.H., Hwang, H., Choi, J.W., Baek, K.-H.: Volatile compounds and antioxidant capacity of the bio-oil obtained by pyrolysis of Japanese red pine (pinus densiflora siebold and zucc.). Molecules 20(3), 3986–4006 (2015)CrossRefGoogle Scholar
  31. 31.
    Rasouli, H., Hosseini-Ghazvini, S.M., Adibi, H., Khodarahmi, R.: Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 8(5), 1942–1954 (2017)CrossRefGoogle Scholar
  32. 32.
    Adandonon, A., Regnier, T., Aveling, T.A.: Phenolic content as an indicator of tolerance of cowpea seedlings to Sclerotium rolfsii. Eur. J. Plant Pathol 149(2), 245–251 (2017)CrossRefGoogle Scholar
  33. 33.
    Liu, S.Q., Scott, I.M., Pelletier, Y., Kramp, K., Durst, T., Sims, S.R., Arnason, J.T.: Dillapiol: a pyrethrum synergist for control of the Colorado potato beetle. J. Econ. Entomol 107(2), 797–805 (2014)CrossRefGoogle Scholar
  34. 34.
    Wang, J.J., Wei, D., Dou, W., Hu, F., Liu, W.F., Wang, J.J.: Toxicities and synergistic effects of several insecticides against the oriental fruit fly (Diptera: Tephritidae). J. Econ. Entomol 106(2), 970–978 (2013)CrossRefGoogle Scholar
  35. 35.
    Patathananone, S., Thammasirirak, S., Daduang, J., Gung, C.J., Temsiripong, Y., Daduang, S.: Inhibition of hela cells metastasis by bioactive compounds in crocodile (Crocodylus siamensis) white blood cells extract. Environ. Toxicol. 31(11), 1329–1336 (2016)CrossRefGoogle Scholar
  36. 36.
    Zhang, M., Fang, T., Pu, G., Sun, X., Zhou, X., Cai, Q.: Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Pestic. Biochem. Physiol. 107(1), 44–49 (2013)CrossRefGoogle Scholar
  37. 37.
    Sukhirun, N., Pluempanupat, W., Bullangpoti, V., Koul, O.: Bioefficacy of Alpinia galanga (Zingiberaceae) rhizome extracts, (E)-p-acetoxycinnamyl alcohol, and (E)-p-coumaryl alcohol ethyl ether against Bactrocera dorsalis (Diptera: Tephritidae) and the impact on detoxification enzyme activities. J. Econ. Entomol 104(5), 1534–1540 (2011)CrossRefGoogle Scholar
  38. 38.
    Xu, L.Q., Pranantyo, D., Neoh, K.G., Kang, E.T., Teo, S.L.M., Fu, G.D.: Synthesis of catechol and zwitterion-bifunctionalized poly(ethylene glycol) for the construction of antifouling surfaces. Polym. Chem. 7(2), 493–501 (2016)CrossRefGoogle Scholar
  39. 39.
    Ali, A., Bansal, D., Kaushik, N.K., Kaushik, N., Choi, E.H., Gupta, R.: Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups. J. Chem. Sci. 126(4), 1091–1105 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of ForestryShanxi Agriculture UniversityTaiguChina
  2. 2.London Research and Development CentreAgriculture and Agri-Food CanadaLondonCanada
  3. 3.Departments of Biochemistry and ChemistryUniversity of Western OntarioLondonCanada
  4. 4.Department of Chemical and Biochemical EngineeringUniversity of Western OntarioLondonCanada
  5. 5.Faculté des Sciences de TunisUnité de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes AbiotiquesTunis El ManarTunisia
  6. 6.Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University)Ministry of EducationKunmingChina

Personalised recommendations