Waste and Biomass Valorization

, Volume 10, Issue 4, pp 865–876 | Cite as

Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation

  • Stavros MichailosEmail author
  • David Parker
  • Colin Webb
Original Paper


Ethanol production from non-edible feedstock has received significant attention over the past two decades. The utilisation of agricultural residues within the biorefinery concept can positively contribute to the renewable production of fuels. To this end, this study proposes the utilisation of bagasse in a hybrid conversion route for ethanol production. The main steps of the process are the gasification of the raw material followed by syngas fermentation to ethanol. Aspen plus was utilised to rigorously design the biorefinery coupled with Matlab to perform process optimisation. Based on the simulations, ethanol can be produced at a rate of 283 L per dry tonne of bagasse, achieving energy efficiency of 43% and according to the environmental analysis, is associated with low CO2 emissions. The conduction of a typical discounted cash flow analysis resulted in a minimum ethanol selling price of 0.69 $ L−1. The study concludes with multiobjective optimisation setting as objective functions the conflictive concepts of total investment costs and exergy efficiency. The total cost rate of the system is minimised whereas the exergy efficiency is maximised by using a genetic algorithm. This way, various process configurations and trade-offs between the investigated criteria were analysed for the proposed biorefinery system.


Second generation ethanol Syngas fermentation Technoeconomic analysis Sustainability analysis Process simulation Multiobjective optimisation 


  1. 1.
    He, J., Zhang, W.: Techno-economic evaluation of thermo-chemical biomass-to-ethanol. Appl. Energy 88(4), 1224–1232 (2011). Google Scholar
  2. 2.
    Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14(2), 578–597 (2010). Google Scholar
  3. 3.
    Antizar-Ladislao, B., Turrion-Gomez, J.L.: Second-generation biofuels and local bioenergy systems. Biofuels, Bioprod. Biorefin. 2(5), 455–469 (2008). Google Scholar
  4. 4.
    Mohr, A., Raman, S.: Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63, 114–122 (2013). Google Scholar
  5. 5.
    Gupta, A., Verma, J.P.: Sustainable bio-ethanol production from agro-residues: a review. Renew. Sustain. Energy Rev. 41, 550–567 (2015). Google Scholar
  6. 6.
    Saini, J.K., Saini, R., Tewari, L.: Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4), 337–353 (2015). Google Scholar
  7. 7.
    Srivastava, N., Rawat, R., Singh Oberoi, H., Ramteke, P.W.: A review on fuel ethanol production from lignocellulosic biomass. Int. J. Green Energy 12(9), 949–960 (2015). Google Scholar
  8. 8.
    Liguori, R., Ventorino, V., Pepe, O., Faraco, V.: Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Appl. Microbiol. Biotechnol. 100, 597–611 (2016). Google Scholar
  9. 9.
    Fang, K., Li, D., Lin, M., Xiang, M., Wei, W., Sun, Y.: A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catal. Today 147(2), 133–138 (2009). Google Scholar
  10. 10.
    Acharya, B., Roy, P., Dutta, A.: Review of syngas fermentation processes for bioethanol. Biofuels 5(5), 551–564 (2014). Google Scholar
  11. 11.
    Bertsch, J., Müller, V.: Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol. Biofuels 8(1), 210 (2015). Google Scholar
  12. 12.
    Piccolo, C., Bezzo, F.: A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenergy 33(3), 478–491 (2009). Google Scholar
  13. 13.
    Wagner, H., Kaltschmitt, M.: Biochemical and thermochemical conversion of wood to ethanol—simulation and analysis of different processes. Biomass Convers. Biorefin. 3(2), 87–102 (2013). Google Scholar
  14. 14.
    Roy, P., Dutta, A., Deen, B.: Greenhouse gas emissions and production cost of ethanol produced from biosyngas fermentation process. Bioresour. Technol. 192, 185–191 (2015). Google Scholar
  15. 15.
    Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T., Vandenberghe, L.P.S., Mohan, R.: Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresour. Technol. 74(1), 81–87 (2000). Google Scholar
  16. 16.
    Zanin, G.M., Santana, C.C., Bon, E.P., Giordano, R.C., de Moraes, F.F., Andrietta, S.R., de Carvalho Neto, C.C., Macedo, I.C., Fo, D.L., Ramos, L.P., Fontana, J.D.: Brazilian bioethanol program. Appl. Biochem. Biotechnol. 84–86, 1147–1161 (2000)Google Scholar
  17. 17.
    Zabed, H., Sahu, J.N., Boyce, A.N., Faruq, G.: Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev. 66, 751–774 (2016). Google Scholar
  18. 18.
    Balat, M., Balat, H.: Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 86(11), 2273–2282 (2009). Google Scholar
  19. 19.
    Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D.G., Santas, P., Santas, R., Corleti, V.: Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 98(2), 296–301 (2007). Google Scholar
  20. 20.
    Gao, Y., Xu, J., Zhang, Y., Yu, Q., Yuan, Z., Liu, Y.: Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Bioresour. Technol. 144, 396–400 (2013). Google Scholar
  21. 21.
    Bhatia, L., Johri, S., Ahmad, R.: An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2(1), 65 (2012). Google Scholar
  22. 22.
    Isikgor, F.H., Becer, C.R.: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6(25), 4497–4559 (2015). Google Scholar
  23. 23.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005). Google Scholar
  24. 24.
    Gassner, M., Maréchal, F.: Thermo-economic process model for thermochemical production of synthetic natural gas (SNG) from lignocellulosic biomass. Biomass Bioenergy 33(11), 1587–1604 (2009). Google Scholar
  25. 25.
    Michailos, S., Parker, D., Webb, C.: Comparative analysis of synthetic natural gas versus hydrogen production from bagasse. Chem. Eng. Technol. 40(3), 546–554 (2017). Google Scholar
  26. 26.
    Farzad, S., Mandegari, M.A., Görgens, J.F.: A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Res. J. 3(4), 483–495 (2016). Google Scholar
  27. 27.
    Fu, Q., kansha, Y., Song, C., Liu, Y., Ishizuka, M., Tsutsumi, A.: An advanced cryogenic air separation process based on self-heat recuperation for CO2 separation. Energy Procedia 61, 1673–1676 (2014). Google Scholar
  28. 28.
    Perrin, N., Dubettier, R., Lockwood, F., Tranier, J.-P., Bourhy-Weber, C., Terrien, P.: Oxycombustion for coal power plants: advantages, solutions and projects. Appl. Therm. Eng. 74, 75–82 (2015). Google Scholar
  29. 29.
    Trippe, F., Fröhling, M., Schultmann, F., Stahl, R., Henrich, E.: Techno-economic assessment of gasification as a process step within biomass-to-liquid (BtL) fuel and chemicals production. Fuel Process. Technol. 92(11), 2169–2184 (2011). Google Scholar
  30. 30.
    Sudiro, M., Bertucco, A.: Production of synthetic gasoline and diesel fuel by alternative processes using natural gas and coal: process simulation and optimization. Energy 34(12), 2206–2214 (2009). Google Scholar
  31. 31.
    Panopoulos, K.D., Fryda, L.E., Karl, J., Poulou, S., Kakaras, E.: High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification: part I: modelling and feasibility study. J. Power Sources 159(1), 570–585 (2006). Google Scholar
  32. 32.
    Erlich, C., Fransson, T.H.: Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: experimental study. Appl. Energy 88(3), 899–908 (2011). Google Scholar
  33. 33.
    Sreejith, C.C., Muraleedharan, C., Arun, P.: Thermo-chemical analysis of biomass gasification by gibbs free energy minimization model-part: II (optimization of biomass feed and steam to biomass ratio). Int. J. Green Energy 10(6), 610–639 (2013). Google Scholar
  34. 34.
    Drzyzga, O., Revelles, O., Durante-Rodríguez, G., Díaz, E., García, J.L., Prieto, A.: New challenges for syngas fermentation: towards production of biopolymers. J. Chem. Technol. Biotechnol. 90(10), 1735–1751 (2015). Google Scholar
  35. 35.
    Arora, D., Basu, R., Breshears, F.S., Gaines, L.D., Hays, K.S., Phillips, J.R., Wikstrom, C.V., Clausen, E.C.: J. L. Gaddy. United States. Department of Energy. Office of Energy Efficiency and Renewable Energy., United States. Department of Energy. Albuquerque Operations Office., United States. Department of Energy. Office of Scientific and Technical Information.: Production of ethanol from refinery waste gases. Final report, April 1994–July 1997. United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy,. (1997)
  36. 36.
    De Kam, M.J., Vance Morey, R., Tiffany, D.G.: Biomass integrated gasification combined cycle for heat and power at ethanol plants. Energy Convers. Manag. 50(7), 1682–1690 (2009). Google Scholar
  37. 37.
    Williams, T.C., Shaddix*, C.R., Schefer, R.W.: Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor. Combust. Sci. Technol. 180(1), 64–88 (2007). Google Scholar
  38. 38.
    Tassios, D.P.: Extractive and azeotropic distillation, In: Advances in chemistry, vol. 115. American Chemical Society, Washington, (1974)Google Scholar
  39. 39.
    Park, S.R., Pandey, A.K., Tyagi, V.V., Tyagi, S.K.: Energy and exergy analysis of typical renewable energy systems. Renew. Sustain. Energy Rev. 30, 105–123 (2014). Google Scholar
  40. 40.
    Michailos, S., Parker, D., Webb, C.: A multicriteria comparison of utilizing sugar cane bagasse for methanol to gasoline and butanol production. Biomass Bioenerg. 95, 436–448 (2016). Google Scholar
  41. 41.
    Bridgwater, A.V.: Step counting methods for preliminary capital cost estimating. Cost Eng. 23(5), 293–302 (1981)Google Scholar
  42. 42.
    Lucia, A., Towler, G.: Chemical engineering design principles, practice, and economics of plant and process design by. and R. Sinnott. AIChE J. 54(11), 3034–3035 (2008). Google Scholar
  43. 43.
    Sadhukhan, J., Ng, K.S., Hernandez, E.M.: Economic analysis. Biorefineries and chemical processes. pp. 43–61. Wiley, Hoboken (2014)Google Scholar
  44. 44.
    Hamelinck, C.N., Hooijdonk, G.v., Faaij, A.P.C.: Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28(4), 384–410 (2005). Google Scholar
  45. 45.
    Caputo, A.C., Palumbo, M., Pelagagge, P.M., Scacchia, F.: Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass Bioenergy 28(1), 35–51 (2005). Google Scholar
  46. 46.
    Peters, M., Timmerhaus, K., West, R.: Plant design and economics for chemical engineers. McGraw-Hill Education, New York (2003)Google Scholar
  47. 47.
    Gubicza, K., Nieves, I.U., Sagues, W.J., Barta, Z., Shanmugam, K.T., Ingram, L.O.: Techno-economic analysis of ethanol production from sugarcane bagasse using a liquefaction plus Simultaneous Saccharification and co-Fermentation process. Bioresour. Technol. 208, 42–48 (2016). Google Scholar
  48. 48.
    UNICA – Brazilian Sugarcane Industry Association. Report. (Accessed 4/02/2015)
  49. 49.
    Humbird, D., National Renewable Energy Laboratory (U.S.), Harris Group Inc.: Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol : dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Natl. Renew. Energy Lab.
  50. 50.
    Jones, S., Meyer, P., Snowden-Swan, L., Padmaperum, A., Tan, E., Dutta, A., Jacobson, J., Cafferty, K.: Pacific Northwest National Laboratory (U.S.)., United States. Department of Energy., United States. Department of Energy. Office of Scientific and Technical Information.: Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels fast pyrolysis and hydrotreating bio-oil pathway. United States. Department of Energy. ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,. (2013)
  51. 51.
    de Jong, S., Hoefnagels, R., Faaij, A., Slade, R., Mawhood, R., Junginger, M.: The feasibility of short-term production strategies for renewable jet fuels—a comprehensive techno-economic comparison. Biofuels, Bioprod. Biorefin. 9(6), 778–800 (2015). Google Scholar
  52. 52.
    Rubin, E.S., Azevedo, I.M.L., Jaramillo, P., Yeh, S.: A review of learning rates for electricity supply technologies. Energy Policy 86(Supplement C), 198–218 (2015). Google Scholar
  53. 53.
    Albarelli, J.Q., Onorati, S., Caliandro, P., Peduzzi, E., Meireles, M.A.A., Marechal, F., Ensinas, A.V.: Multi-objective optimization of a sugarcane biorefinery for integrated ethanol and methanol production. Energy (2015). Google Scholar
  54. 54.
    Geraili, A., Sharma, P., Romagnoli, J.A.: A modeling framework for design of nonlinear renewable energy systems through integrated simulation modeling and metaheuristic optimization: applications to biorefineries. Comput. Chem. Eng. 61, 102–117 (2014). Google Scholar
  55. 55.
    Devarapalli, M., Atiyeh, H.K.: A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Res. J. 2(3), 268–280 (2015). Google Scholar
  56. 56.
    Richter, H., Martin, M., Angenent, L.: A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6(8), 3987 (2013)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Chemical Engineering & Applied ChemistryAston UniversityBirminghamUK
  2. 2.School of BiosciencesUniversity of ExeterExeterUK
  3. 3.School of Chemical Engineering and Analytical ScienceThe University of ManchesterManchesterUK

Personalised recommendations