Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1285–1294 | Cite as

Physical and Chemical Characterization of Agave tequilana Bagasse Pretreated with the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate

  • Mintzirani Equihua-Sánchez
  • Luis F. Barahona-PérezEmail author
Original Paper

Abstract

Pretreatment of lignocellulosic biomass remains a bottleneck for the production of second-generation bioethanol. Conventional pretreatments have had moderated success in meeting the criteria to be considered cost and energy efficient; however, ionic liquids have shown promising results. 1-ethyl-3-methylimidazolium acetate is one of the most successful ionic liquids used for biomass dissolution. The physical and chemical changes of ionic liquid pretreated lignocellulosic materials must be thoroughly studied to maximize the benefits of this technology. Agave tequilana bagasse (a major source of residual lignocellulosic biomass in Mexico) was pretreated using ionic liquid at four different temperatures: 40, 80, 120 and 160 °C. Untreated and pretreated samples were chemically characterized, and their physical properties were studied using X-ray diffraction, thermogravimetric analysis, attenuated total reflection Fourier-transform infrared spectroscopy, scanning electron microscopy, and surface area analysis using a BET model. Positive effects in the physical characteristics of the bagasse were obtained: an increase in surface area, decrease in cellulose crystallinity, and lignin content were observed at temperatures up to 120 °C. Higher temperatures were detrimental for these characteristics.

Keywords

Lignocellulose Biomass dissolution Bioethanol Biofuels Renewable energy 

Notes

Acknowledgements

The authors would like to thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the Scholarship No. 389217 granted to Mintzirani Equihua-Sánchez. The authors gratefully acknowledge Tanit Toledano-Thompson for the SEM images acquisition and M.Sc. Jorge Arturo Domínguez-Maldonado for FTIR spectroscopy data acquisition.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Haines, A., McMichael, A.J., Smith, K.R., Roberts, I., Woodcock, J., Markandya, A., Armstrong, B.G., Campbell-Lendrum, D., Dangour, A.D., Davies, M., Bruce, N., Tonne, C., Barrett, M., Wilkinson, P.: Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers. Lancet 374(9707), 2104–2114 (2009).  https://doi.org/10.1016/S0140-6736(09)61759-1 Google Scholar
  2. 2.
    International Energy Agency: Tracking clean energy progress 2016. In: OECD/IEA (ed.) Energy Technology Perspectives 2016. IEA, Paris (2016)Google Scholar
  3. 3.
    International Renewable Energy Agency: REthinking Energy 2017: Accelerating the Global Energy Transformation. IRENA, Abu Dhabi (2017)Google Scholar
  4. 4.
    Ribeiro, S.K., Kobayashi, S., Beuthe, M., Gasca, J., Greene, D., Lee, D.S., Muromachi, Y., Newton, P.J., Plotkin, S., Sperling, D., Wit, R., Zhou, P.J.: Transportation and its infrastructure. In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds.) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)Google Scholar
  5. 5.
    Rubin, E.M.: Genomics of cellulosic biofuels. Nature 454(7206), 841–845 (2008).  https://doi.org/10.1038/nature07190 Google Scholar
  6. 6.
    Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G., Zacchi, G.: Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol. 24(12), 549–556 (2006).  https://doi.org/10.1016/j.tibtech.2006.10.004 Google Scholar
  7. 7.
    Haghighi Mood, S., Golfeshan, H., Tabatabaei, A., Jouzani, M.Salehi, Najafi, G., Gholami, G.H., Ardjmand, M.: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27, 77–93 (2013).  https://doi.org/10.1016/j.rser.2013.06.033 Google Scholar
  8. 8.
    Rosatella, A.A., Afonso, C.A.M.: Chapter 2: the dissolution of biomass in ionic liquids towards pre-treatment approach. In: Ionic Liquids in the Biorefinery Concept: Challenges and Perspectives. pp. 38–64. The Royal Society of Chemistry (2016)Google Scholar
  9. 9.
    Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B.: Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29(6), 675–685 (2011).  https://doi.org/10.1016/j.biotechadv.2011.05.005 Google Scholar
  10. 10.
    Panagiotou, G., Olsson, L.: Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng. 96, 250–258 (2007).  https://doi.org/10.1002/bit.21100 Google Scholar
  11. 11.
    Pan, X.J.: Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J. Biobased Mater. Bioenerg. 2, 25–32 (2008).  https://doi.org/10.1166/jbmb.2008.005 Google Scholar
  12. 12.
    Xiao, Z.Z., Zhang, X., Gregg, D.J., Saddler, J.N.: Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 113–16, 1115–1126 (2004).  https://doi.org/10.1007/978-1-59259-837-3_90 Google Scholar
  13. 13.
    Jönsson, L.J., Martín, C.: Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112 (2016).  https://doi.org/10.1016/j.biortech.2015.10.009 Google Scholar
  14. 14.
    Luo, J., Cai, M., Gu, T.: Pretreatment of lignocellulosic biomass using green ionic liquids. In: Gu, T. (ed.) Green Biomass Pretreatment for Biofuels Production. Springer Briefs in Molecular Science, pp. 127–153. Springer, Dordrecht (2013)Google Scholar
  15. 15.
    da Costa Lopes, A., Joao, K., Morais, A.R., Bogel-Lukasik, E., Bogel-Lukasik, R.: Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain. Chem. Process. 1(1), 3 (2013).  https://doi.org/10.1186/2043-7129-1-3 Google Scholar
  16. 16.
    Fang, Z., Smith, R.L., Qi, X.: Production of Biofuels and Chemicals with Ionic Liquids. In: Biofuels and Biorefineries, vol. 1, 1 edn. Springer, New York (2014)Google Scholar
  17. 17.
    Dibble, D.C., Li, C., Sun, L., George, A., Cheng, A., Cetinkol, O.P., Benke, P., Holmes, B.M., Singh, S., Simmons, B.A.: A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chem. 13(11), 3255–3264 (2011).  https://doi.org/10.1039/C1GC15111H Google Scholar
  18. 18.
    Sun, J., Shi, J., Murthy Konda, N.V.S.N., Campos, D., Liu, D., Nemser, D., Shamshina, S., Dutta, J., Berton, T., Gurau, P., Rogers, G., Simmons, R.D., Singh, B.A.: Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation. Biotechnol. Biofuels. 10(1), 154 (2017).  https://doi.org/10.1186/s13068-017-0842-9 Google Scholar
  19. 19.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124(18), 4974–4975 (2002).  https://doi.org/10.1021/ja025790m Google Scholar
  20. 20.
    Gurau, G., Wang, H., Qiao, Y., Lu, X., Zhang, S., Rogers Robin, D.: Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure Appl. Chem. 84(3), 745 (2012).  https://doi.org/10.1351/PAC-CON-11-11-10 Google Scholar
  21. 21.
    Kosan, B., Michels, C., Meister, F.: Dissolution and forming of cellulose with ionic liquids. Cellulose 15(1), 59–66 (2008).  https://doi.org/10.1007/s10570-007-9160-x Google Scholar
  22. 22.
    Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodriguez, H., Rogers, R.D.: Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. (2009).  https://doi.org/10.1039/B822702K Google Scholar
  23. 23.
    FitzPatrick, M., Champagne, P., Cunningham, M.F., Whitney, R.A.: A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 101(23), 8915–8922 (2010).  https://doi.org/10.1016/j.biortech.2010.06.125 Google Scholar
  24. 24.
    Li, W., Sun, N., Stoner, B., Jiang, X., Lu, X., Rogers, R.D.: Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem. 13(8), 2038–2047 (2011).  https://doi.org/10.1039/C1GC15522A Google Scholar
  25. 25.
    da Silva, S.A., Lee, S.-H., Endo, T., Bon, E.P.: Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim] [Ac]). Biores. Technol. 102(22), 10505–10509 (2011).  https://doi.org/10.1016/j.biortech.2011.08.085 Google Scholar
  26. 26.
    Karatzos, S., Edye, L., Doherty, W.O.: Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics. Biotechnol. Biofuels 5(1), 62 (2012).  https://doi.org/10.1186/1754-6834-5-62 Google Scholar
  27. 27.
    Yoon, L.W., Ngoh, G.C., May Chua, A.S., Hashim, M.A.: Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification. J. Chem. Technol. Biotechnol. 86(10), 1342–1348 (2011).  https://doi.org/10.1002/jctb.2651 Google Scholar
  28. 28.
    Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A., Singh, S.: Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Biores. Technol. 101(13), 4900–4906 (2010).  https://doi.org/10.1016/j.biortech.2009.10.066 Google Scholar
  29. 29.
    Dutta, T., Shi, J., Sun, J., Zhang, X., Cheng, G., Simmons, B.A., Singh, S.: Chapter 3: Ionic liquid pretreatment of lignocellulosic biomass for biofuels and chemicals. In: Ionic Liquids in the Biorefinery Concept: Challenges and Perspectives. pp. 65–94. The Royal Society of Chemistry, London (2016)Google Scholar
  30. 30.
    Dougherty, M.J., Tran, H.M., Stavila, V., Knierim, B., George, A., Auer, M., Adams, P.D., Hadi, M.Z.: Cellulosic biomass pretreatment and sugar yields as a function of biomass particle size. PLoS ONE 9(6), e100836 (2014).  https://doi.org/10.1371/journal.pone.0100836 Google Scholar
  31. 31.
    da Costa Lopes, A.M., João, K.G., Rubik, D.F., Bogel-Łukasik, E., Duarte, L.C., Andreaus, J., Bogel-Łukasik, R.: Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation. Biores. Technol. 142, 198–208 (2013).  https://doi.org/10.1016/j.biortech.2013.05.032 Google Scholar
  32. 32.
    Lynam, J.G., Toufiq Reza, M., Vasquez, V.R., Coronella, C.J.: Pretreatment of rice hulls by ionic liquid dissolution. Bioresour. Technol. 114(Supplement C), 629–636 (2012).  https://doi.org/10.1016/j.biortech.2012.03.004 Google Scholar
  33. 33.
    Samayam, I.P., Schall, C.A.: Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresour. Technol. 101(10), 3561–3566: (2010).  https://doi.org/10.1016/j.biortech.2009.12.066 Google Scholar
  34. 34.
    Perez-Pimienta, J.A., Lopez-Ortega, M.G., Varanasi, P., Stavila, V., Cheng, G., Singh, S., Simmons, B.A.: Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass. Bioresour. Technol. 127, 18–24 (2013).  https://doi.org/10.1016/j.biortech.2012.09.124 Google Scholar
  35. 35.
    SAGARPA: Atlas agroalimentario 2016. In: Servicio de información agroalimentaria y pesquera, 1 edn, Ciudad de México (2016)Google Scholar
  36. 36.
    Consejo Regulador del Tequila: Consumo de Agave para Tequila y Tequila 100% de Agave. https://www.crt.org.mx/EstadisticasCRTweb/ (2016). Accessed 8 May 2017
  37. 37.
    Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959).  https://doi.org/10.1177/004051755902901003 Google Scholar
  38. 38.
    Yang, L., Lu, M., Carl, S., Mayer, J.A., Cushman, J.C., Tian, E., Lin, H.: Biomass characterization of agave and opuntia as potential biofuel feedstocks. Biomass Bioenerg. 76, 43–53 (2015).  https://doi.org/10.1016/j.biombioe.2015.03.004 Google Scholar
  39. 39.
    Li, H., Foston, M.B., Kumar, R., Samuel, R., Gao, X., Hu, F., Ragauskas, A.J., Wyman, C.E.: Chemical composition and characterization of cellulose for agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv. 2(11), 4951–4958 (2012).  https://doi.org/10.1039/C2RA20557B Google Scholar
  40. 40.
    Caspeta, L., Caro-Bermúdez, M.A., Ponce-Noyola, T., Martinez, A.: Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl. Energ. 113(Supplement C), 277–286 (2014).  https://doi.org/10.1016/j.apenergy.2013.07.036 Google Scholar
  41. 41.
    Perez-Pimienta, J.A., Flores-Gómez, C.A., Ruiz, H.A., Sathitsuksanoh, N., Balan, V., da Costa Sousa, L., Dale, B.E., Singh, S., Simmons, B.A.: Evaluation of agave bagasse recalcitrance using AFEX™, autohydrolysis, and ionic liquid pretreatments. Bioresour. Technol. 211, 216–223 (2016).  https://doi.org/10.1016/j.biortech.2016.03.103 Google Scholar
  42. 42.
    Zhang, J., Wang, Y., Zhang, L., Zhang, R., Liu, G., Cheng, G.: Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour. Technol. 151(Supplement C), 402–405 (2014).  https://doi.org/10.1016/j.biortech.2013.10.009 Google Scholar
  43. 43.
    Qiu, Z., Aita, G.M., Walker, M.S.: Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour. Technol. 117, 251–256 (2012).  https://doi.org/10.1016/j.biortech.2012.04.070 Google Scholar
  44. 44.
    Ling, Z., Chen, S., Zhang, X., Takabe, K., Xu, F.: Unraveling variations of crystalline cellulose induced by ionic liquid and their effects on enzymatic hydrolysis. Sci. Rep. 7(1), 10230 (2017).  https://doi.org/10.1038/s41598-017-09885-9 Google Scholar
  45. 45.
    Monje Paula, V., Baran Enrique, J.: Characterization of Calcium oxalate biominerals in Pereskia Species (Cactaceae). Z. Nat. C 64(11–12), 763 (2009).  https://doi.org/10.1515/znc-2009-11-1201 Google Scholar
  46. 46.
    Perez-Pimienta, J.A., Poggi-Varaldo, H.M., Ponce-Noyola, T., Ramos-Valdivia, A.C., Chavez-Carvayar, J.A., Stavila, V., Simmons, B.A.: Fractional pretreatment of raw and calcium oxalate-extracted agave bagasse using ionic liquid and alkaline hydrogen peroxide. Biomass Bioenerg. 91, 48–55 (2016).  https://doi.org/10.1016/j.biombioe.2016.05.001 Google Scholar
  47. 47.
    Çetinkol, ÖP., Dibble, D.C., Cheng, G., Kent, M.S., Knierim, B., Auer, M., Wemmer, D.E., Pelton, J.G., Melnichenko, Y.B., Ralph, J., Simmons, B.A., Holmes, B.M.: Understanding the impact of ionic liquid pretreatment on eucalyptus. Biofuels. 1(1), 33–46 (2010).  https://doi.org/10.4155/bfs.09.5 Google Scholar
  48. 48.
    Perez-Pimienta, J.A., Lopez-Ortega, M.G., Chavez-Carvayar, J.A., Varanasi, P., Stavila, V., Cheng, G., Singh, S., Simmons, B.A.: Characterization of agave bagasse as a function of ionic liquid pretreatment. Biomass Bioenerg. 75, 180–188 (2015).  https://doi.org/10.1016/j.biombioe.2015.02.026 Google Scholar
  49. 49.
    Rezende, C.A., de Lima, M.A., Maziero, P., deAzevedo, E.R., Garcia, W., Polikarpov, I.: Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol. Biofuels. 4(1), 54 (2011).  https://doi.org/10.1186/1754-6834-4-54 Google Scholar
  50. 50.
    Mizi, F., Dasong, D., Biao, H.: Fourier transform infrared spectroscopy for natural fibres. In: Salih, S. (ed.) Fourier Transform—Materials Analysis, pp. 45–68. InTech, Rijeka (2012)Google Scholar
  51. 51.
    Cintrón, M., Hinchliffe, D.: FT-IR examination of the development of secondary cell wall in cotton fibers. Fibers 3(1), 30 (2015).  https://doi.org/10.3390/fib3010030 Google Scholar
  52. 52.
    Ang, T.N., Ngoh, G.C., Chua, A.S.M., Lee, M.G.: Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses. Biotechnol. Biofuels. 5(1), 67 (2012).  https://doi.org/10.1186/1754-6834-5-67 Google Scholar
  53. 53.
    Zhang, J., Feng, L., Wang, D., Zhang, R., Liu, G., Cheng, G.: Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment. Bioresour. Technol. 153, 379–382 (2014).  https://doi.org/10.1016/j.biortech.2013.12.004 Google Scholar
  54. 54.
    Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.-M., Ham-Pichavant, F., Cansell, F., Aymonier, C.: Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenerg. 35(1), 298–307 (2011).  https://doi.org/10.1016/j.biombioe.2010.08.067 Google Scholar
  55. 55.
    Matheus, P., Vinícios, P., Ademir, J.Z.: Structural Characteristics and Thermal Properties of Native Cellulose. In: van de Ven, T., Godbout, L. (ed.) Cellulose—Fundamental Aspects. p. 376. InTech, Rijeka (2013)Google Scholar
  56. 56.
    Zhang, Y.H.P., Lynd, L.R.: Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromol 6(3), 1510–1515 (2005).  https://doi.org/10.1021/bm049235j Google Scholar
  57. 57.
    Yang, B., Dai, Z., Ding, S.-Y., Wyman, C.E.: Enzymatic hydrolysis of cellulosic biomass. Biofuels 2(4), 421–449 (2011).  https://doi.org/10.4155/bfs.11.116 Google Scholar
  58. 58.
    Singh, S., Simmons, B.A., Vogel, K.P.: Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol. Bioeng. 104(1), 68–75 (2009).  https://doi.org/10.1002/bit.22386 Google Scholar
  59. 59.
    Karimi, K., Taherzadeh, M.J.: A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour. Technol. 200, 1008–1018 (2016).  https://doi.org/10.1016/j.biortech.2015.11.022 Google Scholar
  60. 60.
    Xu, J., Zong, M.-H., Fu, S.-Y., Li, N.: Correlation between physicochemical properties and enzymatic digestibility of rice straw pretreated with cholinium ionic liquids. ACS Sustain. Chem. Eng. 4(8), 4340–4345 (2016).  https://doi.org/10.1021/acssuschemeng.6b00860 Google Scholar
  61. 61.
    Karimi, K., Taherzadeh, M.J.: A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour. Technol. 203(Supplement C), 348–356 (2016).  https://doi.org/10.1016/j.biortech.2015.12.035 Google Scholar
  62. 62.
    Huang, R., Su, R., Qi, W., He, Z.: Understanding the key factors for enzymatic conversion of pretreated lignocellulose by partial least square analysis. Biotechnol. Progress. 26(2), 384–392 (2010). doi: https://doi.org/10.1002/btpr.324 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Unidad de Energía RenovableCentro de Investigación Científica de Yucatán ACSierra PapacalMexico

Personalised recommendations