Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1191–1202 | Cite as

Recovery of Wastewater Nitrogen for Solanum lycopersicum Propagation

  • Daniel P. SmithEmail author
  • Nathaniel T. Smith
Original Paper

Abstract

Recovery of wastewater nitrogen and recycle into plant biomass was demonstrated with a anaerobic ion exchange (AN-IX) reactor and hydroponic cultivation of Solanum lycopersicum. A Maryland AN-IX prototype was operated for 355 and confirmed > 95% total nitrogen nitrogen removal at 14–22 °C temperature and clinoptilolite capacity of 0.81 meq NH4+-N/g. Sequential breakthrough of NH4+ was successfully predicted with a 1-D solute transport model, suggesting that NH4+ capture within AN-IX is amenable to rational process design. Solanum lycopersicum (cherry tomato) was cultivated in fill-and-drain hydroponic culture with AN-IX clinoptilolite as sole nitrogen source. Spent clinoptilolite supported greater increases in plant canopy volume and flower and fruit production than synthetic fertilizer or clean, unused zeolite. Ammonium and nitrate increased significantly in the recirculating nutrient medium with spent clinoptilolite, presumably by microbially mediated NH4+ desorption that occurred auto-catalytically without inoculation. This study provides proof-of-principal of local-scale recycling of wastewater nitrogen by AN-IX recovery and direct plant propagation in spent AN-IX media.

Keywords

Wastewater Nitrogen Resource recovery Anaerobic Ion exchange Plant nutrient 

Notes

Acknowledgements

This work was partially funded under Grant EP-D-13-017 from the U.S. Environmental Protection Agency.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rose, C., Parker, A., Jefferson, B., Cartmell, E.: The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 45, 1827–1879 (2015)CrossRefGoogle Scholar
  2. 2.
    Leach, A., Galloway, J., Bleeker, A., Erisman, J., Kohn, R., Kitzes, J.: A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ. Dev. 1, 40–66 (2011)CrossRefGoogle Scholar
  3. 3.
    US EPA: Reactive nitrogen in the United States: an analysis of inputs, flows, consequences and management options. A report of the EPA Science Advisory Board (EPA-SAB-11-013). US EPA, Washington DC (2011)Google Scholar
  4. 4.
    US EPA: Waquoit Bay watershed ecological risk assessment: the effect of land-derived nitrogen loads on estuarine eutrophication. Office of Research and Development, National Center for Environmental Assessment, Washington, DC, 600/R-02/079 (2002)Google Scholar
  5. 5.
    Saber, M., Abouziena, E., Hoballah, E., Haggag, W., Zaghloul, A.: Sewage farming: benefits and adverse effects. Res. J. Pharm. Biol. Chem. Sci. 7(3), 297–313 (2017)Google Scholar
  6. 6.
    Mumpton, F.: La roca magica: uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. USA 96, 3463–3470 (1999)CrossRefGoogle Scholar
  7. 7.
    Smith, D.: Chabazite biofilter for enhanced stormwater nitrogen removal. Water Environ. Res. 83, 373–384 (2011)CrossRefGoogle Scholar
  8. 8.
    Malovanyy, A., Sakalova, H., Yatchyshyn, Y., Plaza, E., Malovanyy, M.: Concentration of ammonium from municipal wastewater using ion exchange process. Desalination 329, 93–102 (2013)CrossRefGoogle Scholar
  9. 9.
    Moussavi, G., Talebi, S., Farrokhi, M., Sabouti, R.: The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chem. Eng. J. 171, 1159–1169 (2011)CrossRefGoogle Scholar
  10. 10.
    Malekian, R., Abedi-Koupai, J., Eslamian, S., Mousavi, S., Abbaspour, K., Afyuni, M.: Ion-exchange process for ammonium removal and release using natural Iranian zeolite. Appl. Clay Sci. 51, 323–329 (2011)CrossRefGoogle Scholar
  11. 11.
    Halim, A., Aziz, H., Johari, M., Ariffin, K.: Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination 262, 31–35 (2010)CrossRefGoogle Scholar
  12. 12.
    Jorgensen, T., Weatherley, L.: Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res. 37, 1723–1728 (2003)CrossRefGoogle Scholar
  13. 13.
    Li, C., Dong, Y., Lei, Y., Wu, D., Xu, P.: Removal of low concentration nutrients in hydroponic wetlands integrated with zeolite and calcium silicate hydrate functional substrates. Ecol. Eng. 82, 442–450 (2015)CrossRefGoogle Scholar
  14. 14.
    Almutairi, A., Weatherley, L.: Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns. J. Environ. Manag. 160, 128–138 (2015)CrossRefGoogle Scholar
  15. 15.
    Wang, X., Zhang, L., Xi, B., Sun, W., Xia, X., Zhu, C., He, X., Li, M., Yang, T., Wang, P., Zhang, Z.: Biogas production improvement and C/N control by natural clinoptilolite addition into anaerobic co-digestion of Phragmites australis, feces and kitchen waste. Bioresour. Technol. 180, 192–199 (2015)CrossRefGoogle Scholar
  16. 16.
    Montalvo, S., Martin, J., Huiliñir, C., Guerrero, L., Borja, R.: Assessment of a UASB reactor with high ammonia concentrations: Effect of zeolite addition on process performance. Process Biochem. 49, 2220–2227 (2014)CrossRefGoogle Scholar
  17. 17.
    Guo, X., Zeng, L., Jin, X.: Advanced regeneration and fixed-bed study of ammonium and potassium removal from anaerobic digested wastewater by natural zeolite. J. Environ. Sci. 25, 954–961 (2013)CrossRefGoogle Scholar
  18. 18.
    Beler Baykal, B., Sari, B.: An investigation on the recovery of plant nutrients from clinoptilolite exhausted with domestic wastewater. In: Proceedings, Small Sustainable Solutions for Water, International Water Association, Venice, Italy, April 18–22, pp. 470–477 (2011)Google Scholar
  19. 19.
    Markou, G., Vandamme, D., Muylaert, K.: Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis. Bioresour. Technol. 155, 373–378 (2014)CrossRefGoogle Scholar
  20. 20.
    Malekian, R., Abedi-Koupai, J., Eslamian, S.: Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater. 185, 970–976 (2011)CrossRefGoogle Scholar
  21. 21.
    Adrover, M., Moyà, G., Vadell, J.: Use of hydroponics culture to assess nutrient supply by treated wastewater. J. Environ. Manag. 127, 162–165 (2013)CrossRefGoogle Scholar
  22. 22.
    Rana, S., Bag, S., Golder, D., Mukherjee, S., Pradhan, C., Jana, B.: Reclamation of municipal domestic wastewater by aquaponics of tomato plants. Ecol. Eng. 37, 981–988 (2011)CrossRefGoogle Scholar
  23. 23.
    Khater, E., Bahnasawy, A., Shams, A., Hassaan, M., Hassan, Y.: Utilization of effluent fish farms in tomato cultivation. Ecol. Eng. 83, 199–207 (2015)CrossRefGoogle Scholar
  24. 24.
    Hu, Z., Lee, J., Chandran, K., Kim, S., Brotto, A., Khanal, S.: Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol. 188, 92–98 (2015)CrossRefGoogle Scholar
  25. 25.
    Yang, L., Giannis, A., Chang, W., Liu, B., Zhang, J., Wang, J.: Application of hydroponic systems for the treatment of source-separated human urine. Ecol. Eng. 81, 182–191 (2015)CrossRefGoogle Scholar
  26. 26.
    Smith, D., Smith, N.: Anaerobic-ion exchange (AN-IX) process for local-scale nitrogen recovery from wastewater. Bioresour. Technol. 196, 324–331 (2015)CrossRefGoogle Scholar
  27. 27.
    Smith, D., Smith, N.: Local-scale recovery of nitrogen recovery for edible plant growth. Water Sci. Technol. 73(6), 1287–1292 (2016)Google Scholar
  28. 28.
    Bachmann, A., Beard, V., McCarty, P.: Performance characteristics of the anaerobic baffled reactor. Water Res. 19, 99–106 (1985)CrossRefGoogle Scholar
  29. 29.
    de Graff, M.: Resource recovery from black water, Thesis, Ph.D., Wageningen University, Wageningen (2010)Google Scholar
  30. 30.
    APHA.: Standard methods for the examination of water and wastewater, 21st edn. APHA, Washington, DC (2005)Google Scholar
  31. 31.
    Smith, D.: Modular nitrogen removal in distributed sanitation water treatment systems. Environ. Eng. 8, 33–42 (2009)Google Scholar
  32. 32.
    Smith, D.: Onsite wastewater nitrogen reduction with expanded media and elemental sulfur biofiltration. Water Sci. Technol. 65(4), 750–756 (2012)CrossRefGoogle Scholar
  33. 33.
    Smith, D., Smith, N.: Nitrogen recovery from onsite wastewater and local recycle. In: Proceedings, Uniting for Progress, National Onsite Wastewater Recycling Association Mega-Conference, Virginia Beach, Virginia (2015)Google Scholar
  34. 34.
    van Genuchten, M., Wierenga, P.: Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci. Soc. Am. J. 40, 473–480 (1976)CrossRefGoogle Scholar
  35. 35.
    Gorbe, E., Calatayud, Á: Optimization of nutrition in soilless systems: a review. Adv. Bot. Res. 53, 193–245 (2010)CrossRefGoogle Scholar
  36. 36.
    Bugbee, B.: Determining the potential productivity of food crops in controlled environments. Adv. Space Res. 12, 85–95. 37 (1992)CrossRefGoogle Scholar
  37. 37.
    McCabe, W., Smith, J., Harriott, P.: Unit operations of chemical engineering. McGraw-Hill, Inc., New York (1993)Google Scholar
  38. 38.
    Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D., Tay, J.: Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Sep. Purif. Technol. 103, 15–20 (2013)CrossRefGoogle Scholar
  39. 39.
    Saltali, K., Sari, A., Aydin, M.: Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. J. Hazard. Mater. 141, 258–263 (2007)CrossRefGoogle Scholar
  40. 40.
    Jama, M., Yucel, H.: Equilibrium studies of sodium-ammonium, potassium-ammonium, and calcium-ammonium exchanges on clinoptilolite Zeolite. Sep. Sci. Technol. 24(15), 1393–1416 (1989)CrossRefGoogle Scholar
  41. 41.
    Townsend, R., Loizidou, M.: Ion exchange properties of natural clinoptilolite, ferrierite and mordenite: 1. Sodium-ammonium equilibria. Zeolites 4(2), 191–195 (1984)CrossRefGoogle Scholar
  42. 42.
    Karadag, D., Koc, Y., Turan, M., Armagan, B.: Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. J. Hazard. Mater. 136, 604–609 (2006)CrossRefGoogle Scholar
  43. 43.
    Gujer, W., Zehnder, A.: Conversion processes in anaerobic digestion. Water Sci. Technol. 15(8–9), 127–167 (1983)CrossRefGoogle Scholar
  44. 44.
    Luostarinen, S., Sanders, W., Kujawa-Roeleveld, K., Zeeman, G.: Effect of temperature on anaerobic treatment of black water in UASB-septic tank systems. Bioresour. Technol. 98(5), 980–986 (2007)CrossRefGoogle Scholar
  45. 45.
    Krishna, G., Kumar, P., Kumar, P.: Treatment of low strength complex wastewater using an anaerobic baffled reactor (ABR). Bioresour. Technol. 99, 8193–8200 (2008)CrossRefGoogle Scholar
  46. 46.
    Atiyeh, R., Lee, S., Edwards, C., Arancon, N., Metzger, J.: The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour. Technol. 84, 7–14 (2002)CrossRefGoogle Scholar
  47. 47.
    Jurgonski, L., Smart, D., Bugbee, B., Nielson, S.: Controlled environments alter nutrient content of soybeans. Adv. Space Res. 20, 1979–1988 (1997)CrossRefGoogle Scholar
  48. 48.
    Paradiso, R., Buonomo, R., Dixon, M., Barbieri, De Pascale, S.: Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): the effect of hydroponic system and nitrogen source. Adv. Space Res. 53, 574–584 (2014)CrossRefGoogle Scholar
  49. 49.
    Tyson, R., Treadwell, D., Simonne, E.: Opportunities and challenges to sustainability in aquaponic systems. HortTechnology 21, 6–13 (2011)CrossRefGoogle Scholar
  50. 50.
    Christou, A., Maratheftis, G., Eliadou, E., Michael, C., Hapeshi, E., Fatta-Kassinos, D.: Impact assessment of the reuse of two discrete treated wastewaters for the irrigation of tomato crop on the soil geochemical properties, fruit safety and crop productivity. Agric. Ecosyst. Environ. 192, 105–114 (2014)CrossRefGoogle Scholar
  51. 51.
    Cary, L., Surdyk, N., Psarras, G., Kasapakis, I., Chartzoulakis, K., Sandei, L., Guerrot, L., Pettenati, C., Kloppmann, M.: W.: Short-term assessment of the dynamics of elements in wastewater irrigated Mediterranean soil and tomato fruits through sequential dissolution and lead isotopic signatures. Agric. Water Manag. 155, 87–99 (2015)CrossRefGoogle Scholar
  52. 52.
    Al-Lahham, O., Assi, E., Fayyad, N.: M.: Translocation of heavy metals to tomato (Solanum lycopersicom) fruit irrigated with treated wastewater. Sci. Hortic. 113(3), 250–254 (2007)CrossRefGoogle Scholar
  53. 53.
    Hossain, M., Strezov, V., Yin Chan, Y., Nelson, O.: Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78, 1167–1171 (2010)CrossRefGoogle Scholar
  54. 54.
    Del Borghi, A., Gallo, M., Strazza, C., Del Borghi, M.: An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: the case study of tomato products supply chain. J. Clean. Prod. 78, 121–130 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.AET Tech LLCSanta CruzUSA
  2. 2.San José-Santa Clara Regional Wastewater FacilitySan JoséUSA

Personalised recommendations