Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1141–1150 | Cite as

One Pot Cascade Conversion of Bio-Based Furfural to Levulinic Acid with Cu-Doped Niobium Phosphate Catalysts

  • Chengjiang Fang
  • Yanxiu Liu
  • Weibo Wu
  • Hu LiEmail author
  • Zhongwei Wang
  • Wenfeng Zhao
  • Tingting Yang
  • Song YangEmail author
Original Paper

Abstract

Liquid-phase catalytic hydrogenation of furfural, followed by hydration to levulinic acid has been considered as one of efficient approaches for upgrading pentose sugars. However, a two-step process is generally employed, which involves the separation and purification of the key intermediate furfuryl alcohol from the reaction mixture. To simplify this catalytic process with improved efficiency, Cu-doped niobium phosphate (xCu/NbP; x = 0.1–5.0 wt%, denoted as Cu loading) catalysts with different Cu loadings were prepared by impregnation and reduction, which could catalyze furfural conversion to levulinic acid through a one pot single-step process. The as-prepared xCu/NbP catalysts were characterized by H2-TPR, XRD, NH3-TPD, XPS, the pore size and pore volume and pyridine-adsorption FT-IR. In this study, the effect of Cu loading, formic acid amount, support type, reaction temperature/time and catalyst reusability on the reaction were investigated. It was found that 1.5 wt% Cu/NbP loading exhibited predominant catalytic activity in the cascade conversion of furfural, producing levulinic acid with a high yield of up to 67.0 mmol% using ten equivalent of formic acid at 160 °C for 3 h. Moreover, the possible mechanism was further elucidated. Also, the catalyst could be easily separated from the mixture, and reused with no remarkable loss of reactivity.

Keywords

Biomass conversion Furfural Levulinic acid Single-step process Heterogeneous catalysis 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 21576059, 21666008), and Key Technologies R&D Program of China (Grant No. 2014BAD23B01).

Supplementary material

12649_2017_131_MOESM1_ESM.doc (603 kb)
Supplementary material 1 (DOC 603 KB)

References

  1. 1.
    Li, H.W., Mahmood, N., Ma, Z., Zhu, M.Q., Wang, J.Q., Zheng, J.L., Yuan, Z.S., Wei, Q., Xu, C.: Preparation and characterization of bio-polyol and bio-based flexible polyurethane foams from fast pyrolysis of wheat straw. Ind. Crop Prod. 103, 64–72 (2017)CrossRefGoogle Scholar
  2. 2.
    Wangchuk, T., He, C., Knibbs, L.D., Mazaheri, M., Morawska, L.: A pilot study of traditional indoor biomass cooking and heating inrural Bhutan: gas and particle concentrations and emission rates. Indoor Air. 27, 160–168 (2017)CrossRefGoogle Scholar
  3. 3.
    Dias, G.M., Ayer, N.W., Khosla, S., Acker, R.V., Young, S.B., Whitney, Y., Hendricks, P.: Life cycle perspectives on the sustainability of Ontario greenhouse tomato production. J. Clean. Prod. 140, 831–839 (2017)CrossRefGoogle Scholar
  4. 4.
    Li, H., Bhadury, P.S., Riisager, A., Yang, S.: One-pot transformation of polysaccharides viamulti-catalytic processes. Catal. Sci. Technol. 4, 4138–4168 (2014)CrossRefGoogle Scholar
  5. 5.
    Holm, M.S., Saravanamurugan, S., Taarning, E.: Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science. 328, 602–605 (2010)CrossRefGoogle Scholar
  6. 6.
    Saravanamurugan, S., Tosi, I., Rasmussen, K.H., Jensen, R.E., Taarning, E., Meier, S., Riisager, A.: Acile and benign conversion of sucrose to fructose using zeolites with balanced Brønsted and lewis acidity. Catal. Sci. Technol. (2017).  https://doi.org/10.1039/C7CY00540G Google Scholar
  7. 7.
    Li, H., Zhen, F. Jr., Yang, R.L.S.: Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog. Energy Combust. Sci. 55, 98–194 (2016)CrossRefGoogle Scholar
  8. 8.
    Yang, F.X., Hanna, M.A., Sun, R.C.: Value-added uses for crude glycerol–A byproduct of biodiesel production. Biotechnol. Biofuels. 5, 13 (2012)CrossRefGoogle Scholar
  9. 9.
    Loaces, I., Schein, S., Noya, F.: Ethanol production by Escherichia coli from Arundo donax biomass under SSF, SHF or CBP process configurations and in situ production of amultifunctional glucanase and xylanase. Bioresour. Technol. 224, 307–313 (2017)CrossRefGoogle Scholar
  10. 10.
    Li, H., Fang, Z., Luo, J., Yang, S.: Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Appl. Catal. B. 200, 182–191 (2017)CrossRefGoogle Scholar
  11. 11.
    Aida, T.M., Qi, X.H., Hiraga, Y.Y., Aida, T.M. Jr., Smith R.L.: Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst. Chem. Eng. J. 314, 508–514 (2017)CrossRefGoogle Scholar
  12. 12.
    Zhang, L.X., Xi, G.Y., Zhang, J.X., Yu, J.X., Yu, H.B., Wang, X.C.: Efficient catalytic system for the direct transformation of lignocellulosicbiomass to furfural and 5-hydroxymethylfurfural. Bioresour. Technol. 224, 656–661 (2017)CrossRefGoogle Scholar
  13. 13.
    Shen, F. Jr., Li, R.L.S., Yan, L.Y., Qi, L.L.: Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain. Chem. Eng. 5, 2421–2427 (2017)CrossRefGoogle Scholar
  14. 14.
    Thapa, I., Mullen, B., Saleem, A., Leibig, C., Baker, R.T., Giorgi, J.B.: Efficient green catalysis for the conversion of fructose to levulinic acid. Appl. Catal. A Gen. 539, 70–79 (2017)CrossRefGoogle Scholar
  15. 15.
    Liu, Y.X., Li, H., He, J., Zhao, W.F., Yang, T.T., Yang, S.: Catalytic conversion of carbohydrates to levulinic acid with mesoporous niobium-containing oxides. Catal. Commun. 93, 20–24 (2017)CrossRefGoogle Scholar
  16. 16.
    Kang, S.M., Zhang, G., Yang, X.S., Yin, H.B., Fu, X.B., Liao, J.X., Tu, J.L., Huang, X.X., Qin, F.G.F., Xu, Y.J.: Effects of p‑toluenesulfonic acid in the conversion of glucose for levulinic acid and sulfonated carbon production. Energy Fuels. 31, 2847–2854 (2017)CrossRefGoogle Scholar
  17. 17.
    Wei, W.Q., Wu, S.B.: Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids. Chem. Eng. J. 307, 389–398 (2017)CrossRefGoogle Scholar
  18. 18.
    Villaverde, M.M., Bertero, N.M., Garetto, T.F., Marchi, A.J.: Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts. Catal. Today. 213, 87–92 (2013)CrossRefGoogle Scholar
  19. 19.
    Rackemann, D.W., Doherty, W.O.: The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Bioref. 5,198–214 (2011)CrossRefGoogle Scholar
  20. 20.
    Ishikawa, S., Jones, D.R., Iqbal, S., Reece, C., Morgan, D.J., Willock, D.J., Miedziak, P.J., Bartley, J.K., Edwards, J.K., Murayama, T., Ueda, W., Hutchings, G.J.: Identification of the catalytically active component of Cu-Zr-O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chem. 19, 225–236 (2017)CrossRefGoogle Scholar
  21. 21.
    Geilen, F.M.A., Engendahl, B., Harwardt, A., Marquardt, W., Klankermayer, J., Leitner, W.: Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew. Chem. Int. Ed. 49, 5510–5514 (2010)CrossRefGoogle Scholar
  22. 22.
    Podolean, I., Kuncser, V., Gheorghe, N., Macovei, D., Parvulescu, V.I., Coman, S.M.: Ru-based magnetic nanoparticles (MNP) for succinicacid synthesis from levulinic acid. Green Chem. 15, 3077–3082 (2013)CrossRefGoogle Scholar
  23. 23.
    Vyver, S.V., Helsen, S., Geboers, J., Yu, F., Thomas, J., Smet, M., Dehaen, W., Leshkov, Y.R., Hermans, I., Sels, B.F.: Mechanistic insights into the kinetic and regiochemical control of the thiol-promoted catalytic synthesis of diphenolic acid. ACS Catal. 2, 2700–2704 (2012)CrossRefGoogle Scholar
  24. 24.
    Vidal, J.D., Climent, M.J., Corma, A., Concepcion, D.P., Iborra, S.: One-pot selective catalytic synthesis of pyrrolidone derivatives from ethyl levulinate and nitro compounds. ChemSusChem. 10, 119–128 (2017)CrossRefGoogle Scholar
  25. 25.
    Thapa, I., Mullen, B., Saleem, A., Leibig, C., Baker, R.T.: Efficient green catalysis for the conversion of fructose to levulinic acid. Appl. Catal. A Gen. 539, 70–79 (2017)CrossRefGoogle Scholar
  26. 26.
    Hu, X., Westerhof, R.J.M., Wu, L.P., Dong, D.H., Li, C.Z.: Upgrading biomass-derived furans via acid-catalysis/hydrogenation: the remarkable difference between water and methanol as the solvent. Green Chem. 17, 219–224 (2015)CrossRefGoogle Scholar
  27. 27.
    Chamnankid, B., Ratanatawanate, C., Faungnawakij, K.: Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water. Chem. Eng. J. 258, 341–347 (2014)CrossRefGoogle Scholar
  28. 28.
    Gupta, K., Tyagi, D., Dwivedi, A.D., Mobin, S.M., Singh, S.K.: Catalytic transformation of bio-derived furans to valuable ketoacids and diketones by water-soluble ruthenium catalysts. Green Chem. 17, 4618–4627 (2015)CrossRefGoogle Scholar
  29. 29.
    Hu, X., Song, Y., Wu, L.P., Gholizadeh, M., Li, C.J.:One-pot synthesis of levulinic acid/ester from C5 Carbohydrates in a Methanol Medium.ACS Sustain. Chem. Eng.1,1593–1599 (2017)CrossRefGoogle Scholar
  30. 30.
    Alonso, D.M., Wettstein, S.G., Mellmer, M.A., Gurbuz, E.I., Dumesic, J.A.: Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass.Energy Environ. Sci. 6, 76–80 (2017)CrossRefGoogle Scholar
  31. 31.
    Ghashghaee, M., Sadjadi, S., Shirvani, S., Farzaneh, V.: A novel consecutive approach for the preparation of Cu-MgO catalysts with high activity for hydrogenation of furfural to furfuryl alcohol. Catal. Lett. 147, 318–327 (2017)CrossRefGoogle Scholar
  32. 32.
    Jiménez-Gómez, C.P., Cecilia, J.A., Durán-Martín, D., Moreno-Tost, R., Santamaría-González, J., Mérida-Robles, J., Mariscal, R., Maireles-Torres, P.: Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. J. Catal. 336, 107–115 (2016)CrossRefGoogle Scholar
  33. 33.
    Jiménez-Gómez, C.P., Cecilia, J.A., Márquez-Rodríguez, I., Moreno-Tost, R., Santamaría-González, J., Mérida-Robles, J., Maireles-Torres, P.: Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts. Catal. Today. 279, 327–338 (2017)CrossRefGoogle Scholar
  34. 34.
    Jaatinen, S.K., Karinen, R.S., Lehtonen, J.S.: Liquid phase furfural hydrotreatment to 2-methylfuran with carbon supported copper, nickel, and iron catalysts. Chem. Select. 2, 51–60 (2017)Google Scholar
  35. 35.
    Villaverde, M.M., Garetto, T.F., Marchi, A.J.: Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catal. Commun. 58, 6–10 (2017)CrossRefGoogle Scholar
  36. 36.
    Gong, W.B., Chen, Y., Zhou, H.J., Wang, H.M., Zhang, H.M., Zhang, Y.X., Wang, G.Z., Zhao, H.J.: Efficient synthesis of furfuryl alcohol from H2-hydrogenation/transfer hydrogenation of furfural using sulfonate group modified Cu catalyst. ACS Sustain. Chem. Eng. 5, 2172–2180 (2017)CrossRefGoogle Scholar
  37. 37.
    Ying, D.H.S., Robert, J.M.: Thermal desorption study of formic acid decomposition on a clean Cu (110) surface.J. Catal. 61, 48–56 (2017)CrossRefGoogle Scholar
  38. 38.
    Henn, F.C., Rodriguez, J.A., Campbell, C.T.: Adsorption and reaction of HCOOH on doped Cu (110): Coadsorption with cesium, oxygen, and Csa + Oa.. Surf. Sci. 236, 282–312 (1990)CrossRefGoogle Scholar
  39. 39.
    Gürbüz, E.I., Wettstein, S.G., Dumesic, J.A.: Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. ChemSusChem. 5, 383–387 (2012)CrossRefGoogle Scholar
  40. 40.
    Paniagua, M., Melero, J.A., Iglesias, J., Morales, G., Hernández, B., López-Aguado, C.: Catalytic upgrading of furfuryl alcohol to bio-products: Catalysts screening and kinetic analysis. Appl. Catal. A Gen. 537, 74–82 (2017)CrossRefGoogle Scholar
  41. 41.
    Islam, M.M., Bhunia, S., Molla, R.A., Bhaumik, A., Islam, S.M.: Organic solid acid catalyst for efficient conversion of furfuryl alcohol to biofuels. Chem. Select. 1, 6079–6085 (2016)Google Scholar
  42. 42.
    Kong, X.J., Wu, S.X., Li, X.L., Liu, J.H.: Efficient conversion of levulinic acid to ethyl levulinate over asilicotungstic-acid-modified commercially silica-gel sphere catalyst. Energy Fuels. 30, 6500–6504 (2016)CrossRefGoogle Scholar
  43. 43.
    Song, D.Y., An, S., Sun, A.N., Zhang, P.P., Guo, Y.H., Zhou, D.D.: Ethane-bridged organosilica nanotubes functionalized with arenesulfonic acid and phenyl groups for the efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. ChemCatChem. 8, 2037–2048 (2016)CrossRefGoogle Scholar
  44. 44.
    Paulino, P.N., Perez, R.F., Figueiredo, N.G., Fraga, M.N.: Tandem dehydration-transfer hydrogenation reactions of xylose to furfuryl alcohol over zeolite catalysts. Green Chem. 19, 3759–3763 (2017)CrossRefGoogle Scholar
  45. 45.
    Carniti, P., Gervasini, A., Biella, S., Auroux, A.: Intrinsic and effective acidity study of niobic acid and niobium phosphate by a multitechnique approach.Chem. Mater. 17, 6128–6136 (2005)CrossRefGoogle Scholar
  46. 46.
    Sarkar, A., Pramanik, P.: Synthesis of mesoporous niobium oxophosphate using niobium tartrate precursor by soft templating method. Micropor. Mesopor. Mater. 117, 580–585 (2009)CrossRefGoogle Scholar
  47. 47.
    Mal, N. K., Bhaumik, A., Fujiwara, M., Matsukata, M.: Novel organic–inorganic hybrid and organic-free mesoporous niobium oxophosphate synthesized in the presence of an anionic surfactant. Micropor. Mesopor. Mater. 93, 40–45 (2006)CrossRefGoogle Scholar
  48. 48.
    Dwivedi, A.D., Gupta, K., Tyagi, D., Rai, R.K., Mobin, S.M., Singh, S.K.: Ruthenium and formic acid based tandem catalytic transformation of bioderived furans to levulinic acid and diketones in water. ChemCatChem. 7, 4050–4058 (2015)CrossRefGoogle Scholar
  49. 49.
    Alonso, D.M., Wettstein, S.G., Mellmer, M.A., Gurbuz, E.I., Dumesic, J.A.: Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ. Sci. 6, 76–80 (2013)CrossRefGoogle Scholar
  50. 50.
    Winoto, H.P., Ahn, B.S., Jae, J.: Production of γ-valerolactone from furfural by a single-step process using Sn-Al-Beta zeolites: Optimizing the catalyst acid properties and process conditions. J. Ind. Eng. Chem. 40, 62–71 (2016)CrossRefGoogle Scholar
  51. 51.
    Xia, Z.J., Liu., H.Y., Lu, H.F., Zhang, Z.K., Chen, Y.F.: High selectivity of cyclohexane dehydrogenation for H2 evolution over Cu/SBA-15 Catalyst. Catal. Lett. 147,1295–1302 (2017)CrossRefGoogle Scholar
  52. 52.
    Wen, C., Yin, A.Y., Cui, Y.Y., Yang, X.L., Dai, W.L., Fan, K.N.: Enhanced catalytic performance for SiO2-TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate. Catal. A Gen. 458, 82–89 (2017)CrossRefGoogle Scholar
  53. 53.
    Sheng, H.B., Lobo, R.F.: Iron-promotion of silica-supported copper catalysts for furfural hydrodeoxygenation. ChemCatChem 8, 1–8 (2016)CrossRefGoogle Scholar
  54. 54.
    Iglesia, E., Michel, B.: Unimolecular and bimolecular formic acid decomposition on copper. J. Phys. Chem. 20, 5272–5274 (1986)CrossRefGoogle Scholar
  55. 55.
    Upare, P.P., Lee, J.M., Hwang, Y.K., Hwang, D.W., Lee, J.H., Halligudi, S.B., Hwang, J.S., Chang, J.S.: Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts. ChemSusChem 4, 1749–1752 (2011)CrossRefGoogle Scholar
  56. 56.
    Sharma, R.V., Das, U., Sammynaiken, R., Dalai, A.K.: Liquid phase chemo-selective catalytic hydrogenation of furfural to furfuryl alcohol. Appl. Catal. A Gen. 454, 127–136 (2013)CrossRefGoogle Scholar
  57. 57.
    Wang, G., Zhang, Z., Song, L.: Efficient and selective alcoholysis of furfuryl alcohol to alkyl levulinates catalyzed by double SO3H-functionalized ionic liquids. Green Chem. 16, 1436–1443 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.State-Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for Research and Development of Fine ChemicalsGuizhou UniversityGuiyangChina

Personalised recommendations