Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1119–1129 | Cite as

l(+)-Lactic Acid Production by Immobilized Lactobacillus casei Using Low Cost Agro-Industrial Waste as Carbon and Nitrogen Sources

  • Avinash ThakurEmail author
  • Parmjit Singh Panesar
  • Manohar Singh Saini
Original Paper


Batch fermentation of molasses for l(+) lactic acid production using corn steep liquor (CSL) as nitrogen source by immobilized Lactobacillus (Lb.) casei MTCC 1423 has been studied. Among different tested immobilizing matrices, sodium alginate has been observed to be the best matrix for l(+)-lactic acid production. Significant reduction in cell release with double layer coated (chitosan and alginate, ACA) beads in comparison to uncoated alginate beads as well as with single layer of chitosan coated beads was observed. Stability of beads in reusability process as a function of l(+)-lactic acid production was tested and found that double layer coated alginate beads containing Lb. casei MTCC 1423 with chitosan and alginate was effective for reducing its porosity, effective l(+)-lactic acid production, enhancing stability and cell entrapment efficiency. Process conditions influence on the production of the l(+)-lactic acid production using immobilized cell system has been studied and maximum lactic acid was obtained with beads having diameter: 2.5 mm, biomass concentration: 40 g (cell dry weight, CDW)/L, shaking speed: 150 rpm, substrate concentration: 175 g/L, CSL concentration: 25 mL/L, at incubation temperature of 37 °C after incubation time of 72 h and pH 7.0.


l(+)-Lactic acid Immobilization Molasses Corn steep liquor Yield 


  1. 1.
    Cuong, M.N., Gyung, J.C., Yong, H.C., Kyoung, S.J., Jin-Cheol, K.: d- and l-lactic acid production from fresh sweet potato through simultaneous saccharification and fermentation. Biochem. Eng. J. 81, 40–46 (2013)Google Scholar
  2. 2.
    Niju, N., Pradip, K.R., Aradhana, S.: L(+) lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 7(2), 167–179 (2004)Google Scholar
  3. 3.
    Abdurahman, H.N., Nuraini, M.: Chemical destabilization on water in crude oil emulsions. World Acad. Sci. Eng. Technol. 38, 700–703 (2010)Google Scholar
  4. 4.
    Jinglan, W., Yanan, H., Jingwei, Z., Wenbin, Q., Xiaoqing, L., Yong, C., Xiaochun, C., Jingjing, X., Jianxin, B., Hanjie, Y.: Separation of d-lactic acid from aqueous solutions based on the adsorption technology. Colloids Surf. A 407, 29–37 (2012)Google Scholar
  5. 5.
    Young, J.W., Kim, J.N., Ryu, H.W.: Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44(2), 163–172 (2006)Google Scholar
  6. 6.
    Mohammad, A.B., Janakiram, N., Gopal, R.: Screening of inexpensive nitrogen sources for production of L(+) lactic acid from starch by amylolytic Lactobacillus amylophilus GV6 in single step fermentation. Food Technol. Biotechnol. 43(3), 235–239 (2005)Google Scholar
  7. 7.
    Ali, H.J., Abbas, F.M.A., Ogugbue, C.J., Azhar, M.E., Norulaini, N.A.N.: Production of the lactic acid from mango peel waste: factorial experiment. J. King Saud. Univ. Sci. 25, 39–45 (2013)Google Scholar
  8. 8.
    Ying, W., Yukihiro, T., Kenji, S.: Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J. Biosci. Bioeng. 119(1), 10–18 (2015)Google Scholar
  9. 9.
    Anjana, D.N., Surendra, K.: Kinetic modeling of lactic acid production from molasses using Enterococcus faecalis RKY1. Biochnol. Eng. J. 38(3), 277–284 (2008)Google Scholar
  10. 10.
    Zhan, Y.Z., Bo, J., Joan, M.K.: Production of lactic acid from renewable materials by Rhizopus fungi. Biochem. Eng. J. 35(3), 251–263 (2007)Google Scholar
  11. 11.
    Goranov, B., Blazheva, D., Kostov, G., Denkova, Z., Germanova, Y.: Lactic acid fermentation with encapsulated Lactobacillus casei ssp. rhamnosus ATCC 11979 (NBIMCC 1013) in alginate/chitosan matrices. Bulg. J. Agric. Sci. 19(2), 101–104 (2013)Google Scholar
  12. 12.
    Mohamed, A.A.-R., Yukihiro, T., Kenji, S.: Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 31, 877–902 (2013)Google Scholar
  13. 13.
    Zijian, Z., Xiaona, X., Zhi, W., Yanchun, T., Xuedun, N., Xuri, H., Li, L., Zhengqiang, L.: Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: an efficiency continuous cell-recycle fermentation system for lactic acid production. J. Biosci. Bioeng. 121(6), 645–651 (2016)Google Scholar
  14. 14.
    Min-Tian, G., Takashi, S., Nobuhiro, I., Haruo, T.: Fermentative lactic acid production with a metabolically engineered yeast immobilized in photo-crosslinkable resins. Biochem. Eng. J. 47, 66–70 (2009)Google Scholar
  15. 15.
    Chaganti, S.R., Reddy, S.P., Adari, B.R., Jhillu, S.Y.: Production of L(+) lactic acid by Lactobacillus delbrueckii immobilized in functionalized alginate matrices. World J. Microbiol. Biotechnol. 24, 1411–1415 (2008)Google Scholar
  16. 16.
    Jerome, L., Jean-Claude, V.: Diffusion-reaction-growth coupling in gel-immobilized cell systems: model and experiment. Enzyme Microbiol. Technol. 17, 276 – 284 (1995)Google Scholar
  17. 17.
    Greenberg, N., Tartakovsky, B., Yirme, G., Ulitzur, S., Sheintuch, M.: Observations and modeling of growth of immobilized microcolonies of luminous E.coli. Chem. Eng. Sci. 51(5), 743–756 (1996)Google Scholar
  18. 18.
    Perez-Bibbins, B., Salgado, J.M., Torrado, A., Aguilar-Uscanga, M.G., Dominguez, J.M.: Culture parameters affecting xylitol production by Debaryomyces hansenii immobilized in alginate beads. Process Biochem. 48, 387–397 (2013)Google Scholar
  19. 19.
    Liang, Z.P., Feng, Y.Q., Meng, S.X., Liang, Z.Y.: Prepration and properties of urease immobilized onto cross-linked chitosan beads. Chin. Chem. Lett. 16, 135–138 (2005)Google Scholar
  20. 20.
    Klinkenberg, G., Lystad, K.Q., Levine, D.W., Dyrset, N.: Cell release from alginate immobilized Lactococcus lactis ssp. lactis in chitosan and alginate coated beads. J. Dairy Sci. 84, 1118–1127 (2010)Google Scholar
  21. 21.
    Idris, A., Wahidin, S.: Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41, 1117–1123 (2006)Google Scholar
  22. 22.
    Kaleem, I., Shen H., Lv., B.L., Wei, B., Rasool, A., Li, C.: Efficient biosynthesis of glycyrrhetic acid 3-O-mono-β-d-glucuronide (GAMG) in water-miscible ionic liquid by immobilized whole cells of Penicillium purpurogenum Li-3 in alginate gel. Chem. Eng. Sci. 106, 136–143 (2014)Google Scholar
  23. 23.
    Kashipeta, R., Tadimalla, P., Katikala, P., Nalli, V.: Immobilization of cyclodextrin glycosyltransferasevfrom newly isolated, mutated Bacillus sp. TPR71HNA6 by entrapment technique. Adv. Appl. Sci. Res. 3(4), 2288–2298 (2012)Google Scholar
  24. 24.
    Idris, A., Zain, N.A.M., Suhaimi, M.S.: Immobilization of Baker’s Yeast in PVA-alginate matrix using innovative immobilization technique. Process Biochem. 43, 331–338 (2008)Google Scholar
  25. 25.
    Zain, N.A.M., Suhaimi, M.S., Idris, A.: Hydrolysis of liquid pineapple waste by invertase immobilized in PVA-alginate matrix. Biochem. Eng. J. 50, 83–89 (2010)Google Scholar
  26. 26.
    Sarote, S., Tiyaporn, L., Wirat, V., Thongchai, S., Henry, H.C., Yusuf, C.: Optimization of lactic acid production by immobilized Lactococcus lactis IO-1. J. Ind. Microbiol. Biotechnol. 34, 381–391 (2007)Google Scholar
  27. 27.
    Reyed, M.R.: Biosynthesis and properties of extracellular amylase by encapsulation of Biofidobacterium bifidium in batch culture. Aust. J. Basic Appl. Sci. 1, 7–14 (2007)Google Scholar
  28. 28.
    Ginjupalli, K., Armugam, K., Shavi, V.G., Averineni, R.K., Mahalingam, B., Udupa, N.: Development of RP-HPLC method for simultaneous estimation of Lactic acid and glycolic acid. Der Pharma Chem. 5(4), 335–340 (2013)Google Scholar
  29. 29.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Robers, P.A., Smith, F.: Colorimetric method for determination of sugar and related substances. Anal. Chem. 28, 350–356 (1996)Google Scholar
  30. 30.
    Lilina, S.C., Aida, R.D.S.: Lactic acid production by a strain of Lactococcus lactics subs lactis isolated from sugar cane plants. Electron. J. Biotechnol. 9(1), 40–45 (2006)Google Scholar
  31. 31.
    Suchata, K., Muenduen, P.: Bacterial cellulose-alginate composite sponge as a Yeast cell carrier for ethanol production. Biochem. Eng. J. 77, 103–109 (2013)Google Scholar
  32. 32.
    Xiaobei, W., Jie, L., Guocheng, D., Jingwen, Z., Jian, C.: Efficient production of l-sorbose from d-sorbitol by whole cell immobilization of Gluconobacter oxydans WSH-003. Biochem. Eng. J. 77, 171–176 (2013)Google Scholar
  33. 33.
    Yeon, J.H., Mi-Sun, L., Jin-Chul, K.: pH-dependent release of alginate beads coated with polylysine. J. Ind. Eng. Chem. 17, 410–414 (2011)Google Scholar
  34. 34.
    Arzu, Y.D., Ozlem, T.: Internal mass transfer effect of biodegradation of phenol by ca-alginate immobilized Ralstonia eutropha. J. Hazard. Mater. B126, 105–111 (2005)Google Scholar
  35. 35.
    Sule, B., Elibol, M., Ozer, D.: Effect of different carbon sources on l-(+)-lactic acid production by Rhizopus oryzae. Biochem. Eng. J. 21, 33–37 (2004)Google Scholar
  36. 36.
    Wenge, F., Mathews, A.P.: Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen. Biochem. Eng. J. 3, 163–170 (1999)Google Scholar
  37. 37.
    Appadurai, S., Vasanthe, S., Rajni, H., Bo, M.: Lactic acid production by immobilized Lactobacillus casei in recycle batch reactor: a step towards optimization. J. Biotechnol. 73, 61–70 (1999)Google Scholar
  38. 38.
    Sebastien, G., Vincent, P., Francis, D.: Lactic acid production from hemicellulosic hydrolyzate by cells of Lactobacillus bifermentans immobilized in Ca-alginate using response surface methodology. World J. Microbiol. Biotechnol. 24, 745–752 (2008)Google Scholar
  39. 39.
    Panesar, P.S., Kennedy, J.F., Knill, C.J., Kosseva, M.R.: Applicability of pectate-entrapped Lactobacillus casei cells for L(+) lactic acid production from whey. Appl. Microbiol. Biotechnol. 74, 35–42 (2007)Google Scholar
  40. 40.
    Qi, W., Yu, W., Xie, Y., Ma, X.: Optimization of Saccharomyces cerevisiae culture in alginate-chitosan-alginate microcapsule. Biochem. Eng. J. 25, 151–157 (2005)Google Scholar
  41. 41.
    Aleksandra, P., Djukic, V., Ljiljana, V.M., Maja, S.V., Marica, B.R., Svetlana, B.N., Jelena, D.P., Maja, L.B.: Effect of different fermentation parameters on l-lactic acid production from liquid distillery stillage. Food Chem. 134, 1038–1043 (2012)Google Scholar
  42. 42.
    Lingappa, K., Syeda, A., Vishalakshi, N., Prabhakar, M.: Immobilization of Streptomyces gulbargensis in polyurethane foam: a promising technique for L-asparaginase production. Iran. J. Biotechnol. 7(4), 199–204 (2009)Google Scholar
  43. 43.
    Serp, D., Cantana, E., Heinzen, C., Von, S.U., Marison, I.W.: Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol. Bioeng. 70(1), 41–53 (2000)Google Scholar
  44. 44.
    Krasaekoopt, W., Bhandari, B., Deeth, H.: The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 14(8), 37–743 (2004)Google Scholar
  45. 45.
    Chavarri, M., Maranon, I., Ares, R., Ibanez, F.C., Marzo, F., Villaran, M.D.C.: Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 142(1–2), 185–189 (2010)Google Scholar
  46. 46.
    Zhao, Z., Xiaona, X., Wang, Z., Tao, Y., Niu, X., Huang, X., Liu, L., Li, Z.: Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: an efficiency continuous cell-recycle fermentation system for lactic acid production. J. Biosci. Bioeng. 121(6), 645–651 (2016)Google Scholar
  47. 47.
    Alexandri, M., Papapostolou, H., Stragier, L., Verstraete, W., Papanikolaou, S., Koutinas, A.A.: Succinic acid production by immobilized cultures using spent sulphite liquor as fermentation medium. Bioresour. Technol. 238, 214–222 (2017)Google Scholar
  48. 48.
    Lee, K.H., Choi, I.S., Kim, Y.-G., Yang, D.-J., Bae, H.-J.: Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresour. Technol. 102, 8191–8198 (2011)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Research Laobratory-III, Department of Chemical EngineeringSant Longowal Institute of Engineering and TechnologyLongowalIndia
  2. 2.Biotechnology Research Laboratory, Department of Food Engineering and TechnologySant Longowal Institute of Engineering and TechnologyLongowalIndia
  3. 3.Guru Nanak Dev Engineering CollegeLudhianaIndia

Personalised recommendations