Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1101–1110 | Cite as

The Impact of Using Microalgae as Biofertilizer in Maize (Zea mays L.)

  • R. Dineshkumar
  • J. Subramanian
  • J. Gopalsamy
  • P. Jayasingam
  • A. Arumugam
  • S. Kannadasan
  • P. SampathkumarEmail author
Original Paper

Abstract

Fertilizers play a key role in yield if agriculture crops and their market value. Hence, large scale production of low cost, eco-friendly and broad spectrum fertilizers are mandatory. This study was to assess the effect of marine microalgal fertilizer on growth and yield of maize (Zea mays L.). The maize plants were raised in soil supplemented with two marine microalgae (Chlorella vulgaris and Spirulina platensis) along with cow dung manure for 75 days under green house condition. The marine microalgal treatment increased growth performance at the early stage of growth and improved yield characteristics, in addition to increased seed germination. Cow dung and two marine microalgae mixture treatment exhibited high growth and yield revealed the potential of the marine microalgae as fertilizer in cultivation of maize.

Keywords

Agriculture Bio-fertilizer Cow dung Spirulina platensis Chlorella vulgaris Maize 

Notes

Acknowledgements

We thank Prof. Dr. K. Kathiresan, D.Sc. Former Dean & Director, Member of Syndicate, CAS in Marine Biology, Annamalai University for his constructive suggestions. This project was carried out with the support of UGC-XIIth Plan. The first author is grateful to the UGC-RGNF, Govt. of India for the financial assistance (F1-17.1/2015-16/RGNF-2015-17-SC-TAM-24190 and January 2016).

Compliance with Ethical Standards

Conflict of interest

The authors declare that we have no competing interests.

References

  1. 1.
    A.O.A.C: Official methods of analysis of the association of agriculture chemists. 13th edn., Benjamin franklin station, Washington, D.C. (1985)Google Scholar
  2. 2.
    Adam, M.S.: The promotive effect of the cyanobacterium Nostoc muscorum on the growth of some crop plants. Acta Microbiol. Polonica. 48, 163–171 (1999)Google Scholar
  3. 3.
    Ajabadenyi, Aebolu: Chemical and nutritional value of maize and maize products obtained from selected markets in Kaduna State. Niger. Afr. J. Food Sci. Technol. 5(4), 100–104 (2005). ISSN 2141-5455. doi: 10.14303/ajfst.2014.029 Google Scholar
  4. 4.
    All India Coordinated Research Project on Maize Directorate of Maize Research Pusa Campus, New Delhi-110 012, IndiaGoogle Scholar
  5. 5.
    A.O.A.C: Official methods of analysis of the AOAC, 15th ed. Methods 932.06, 925.09, 985.29, 923.03. Association of official analytical chemists. Arlington, VA (1990)Google Scholar
  6. 6.
    APHA: Standard methods for examination of water and waste water. APHA, AWWA. Washington, DC. USA. Biol. Sci. 6(3), 547–554 (1992)Google Scholar
  7. 7.
    Ayatse, J.O., Eka, O.N., Ifon, E.T.: Chemical Evaluation of the effect of roasting on nutritive value of Maize (Zea mays. L.) Food Chem. 12, 135–147 (1983)CrossRefGoogle Scholar
  8. 8.
    Badr, M.M., Authman, S.A.: Effect of plant density, organic manure, bio and mineral nitrogen fertilizers on maize growth and yield and soil fertility. Ann. Agric. Sci. 44, 75–88 (2006)Google Scholar
  9. 9.
    Begum, P., Ikhtiari, R., Fugetsu, B., Matsuoka, M., Akasaka, T., Watari, F.: Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl. Surf. Sci. 262, 120–124 (2011)CrossRefGoogle Scholar
  10. 10.
    Bligh, E.G., Dyer WJ: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959)CrossRefGoogle Scholar
  11. 11.
    Burja, A.M., Banaigs, B., Abou-Mansour, E., Burgess, J.G., Wright, P.C.: Marine cyanobacteri—a prolific source of natural products. Tetrahedron 57, 9347 (2001)CrossRefGoogle Scholar
  12. 12.
    Carter, M.R.: Soil sampling and methods of analysis. In: Canadian Society of Soil Science. Boca Raton, Lewis Publishers (1993)Google Scholar
  13. 13.
    Chaffai, A., Louchichi, B.: (2013) Effect of seed size on germination and establishment of vigorous seedlings in durum wheat (Triticum durum Desf.). Adv. Environ. Biol. 7 (1), 77–81Google Scholar
  14. 14.
    Chaffai, A., Louchichi, B.: Effect of seed size on germination and establishment of vigorous seedlings in durum wheat (Triticum durum Desf.). Adv. Environ. Biol. 7(1), 77–81 (2013)Google Scholar
  15. 15.
    Chastin, T.G., Ward, K.J., Wysocki, D.J.: Stand establishment responses of soft white winter wheat to seedbed residue and seed. Crop Sci. 35, 213–218 (1995)CrossRefGoogle Scholar
  16. 16.
    Chaudhry, A.U., Ullah, I.M.: Influence of seed sizemon yield, yield components and quality of three maize genotypes. J. Biol. Sci. 1(3), 150–151 (2001)CrossRefGoogle Scholar
  17. 17.
    Chojnacka, A., romanowska-duda, Z.B., Grzesik, M., pszczolkowski, W., sakowicz, T.: (2010) Cyanobacteria as a source of bioactive compounds for crop cultivation. In: Wolowski, K., Kwandrans, J., Wojtal, A.Z. (eds.), Taxonomy the queen of science—the beau ty of algae. Book of abstracts of the 29th International Phycological Conference Krakow, pp. 81–82Google Scholar
  18. 18.
    Dineshkumar, R., Kumaravel, R., Gopalsamy, J., Sikder, M.N.A., Sampathkumar, P.: Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valor. (2017). doi: 10.1007/s12649-017-9873-5 Google Scholar
  19. 19.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Calorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  20. 20.
    El-Barody, G.S., Moussa, M.Y., Shallan, A.M., Ali, A.M., Sabh, Z.A., Shalaby, A.E.: Contribution to the aroma, biological activities, minerals, protein, pigments and lipid contents of the red alga, Asparagopsis taxiformes (Delie) Trevisan. J. Appl. Sci. Res. 3(12), 1825–1834 (2007)Google Scholar
  21. 21.
    Enayat Gholizadeh, M.R., Bakhshandeh, A.M., Shoar Dehgan, M., Ghaineh, M.H., Alami Saeid, K.H., Sharafizadeh, M.: Effect of source and seed size on yield component of corn S.C704 in Khuzestan. Afr. J. Biotechnol. 11(12), 2938–2944 (2012)Google Scholar
  22. 22.
    Evans, L.E., Bhatt, G.M.: Influence of seed size, protein content and cultivar on early seedling vigor in wheat. Can. J. Plant Sci. 57, 929–935 (1977)CrossRefGoogle Scholar
  23. 23.
    Faheed, F.A., Abd-El Fattah, Z.: Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J. Agri. Soc. Sci. 4, 165–169 (2008)Google Scholar
  24. 24.
    Falch, B.S., Konig, G.M., Wright, A.D., Sticher, O., Angerhofer, C.K., Pezzuto, J.M., Bachmann, H.: Biological activities of cyanobacteria: evaluation of extracts and pure compounds. Planta Med. 61, 321 (1995)CrossRefGoogle Scholar
  25. 25.
    Farahani, H.A., Moaveni, P., Maroufi, K.: Effect of seed size on seedling production in wheat (Triticum aestivum L.). Adv. Environ. Biol. 5(7), 1711–1715 (2011)Google Scholar
  26. 26.
    Gaur, A.C., sadasivam, K.V., Vimal, O.P., Matur, R.S.: A study of decomposition of organic matter in an alluvial soil: CO2 evolution, microbiological and chemical transformation. Plant Soil 34, 17 (1971)CrossRefGoogle Scholar
  27. 27.
    Graven, L.M., Carter, P.R.: Seed size and tillage system effect on corn growth and grain yield. J Prod. Agric. 3(4), 445–452 (1990)CrossRefGoogle Scholar
  28. 28.
    Grzesik, M., Janas, R., Górnik, K., Romanowska-Duda, Z.: Biological and physical methods of seed production and processing. J. Res. Appl. Agric. Eng. 57(3), 147–152 (2009)Google Scholar
  29. 29.
    Haroun, A.S., Hussein, M.H.: The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus terms plant grown in siliceous soil. Asian J. Plant Sci. 2(13), 944–951 (2003). doi: 10.3923/ajps.2003.944.951 CrossRefGoogle Scholar
  30. 30.
    Hendrix, S.D., Nielsen, E., Nielsen, T., Schutt, M.: Are seedling from small seeds always interior to seedlings from large seeds? Effects of seed biomass on seedling growth in Pastinaca sativa L. New Phytol. 119, 299–305 (1991)CrossRefGoogle Scholar
  31. 31.
    Höflich, G., Wiehe, W., Köhn, G.: Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experienca 50, 897–905 (1994)CrossRefGoogle Scholar
  32. 32.
    Hussaini, M.A., Ogunlela, V.B., Ramalan, A.A., Falaki, A.M., Lawal, A.B.: Productivity and water use in maize (Zea mays L.) as influenced by nitrogen, phosphorus and irrigation levels. Crop Res. 23, 228–234 (2002)Google Scholar
  33. 33.
    Ikenie, J.E., Amusan, N.A., Obtaolu, V.O.: Nutrient composition and weight evaluation of some newly developed maize varieties in Nigeria. J. Food Technol. Africa. 7, 27–29 (2002)Google Scholar
  34. 34.
    Ikram, U., Mohammed, A., Arifa, F.: Chemical and nutritional properties of some maize (Zea mays L.) varieties grown in NWFP. Pak. Pak. J. Nutr. 9(11), 1113–1117 (2010)CrossRefGoogle Scholar
  35. 35.
    Kandil, E.E.E.: Response of some maize hybrids (Zea mays L.) to different levels of nitrogenous fertilization. J. Appl. Sci. Res. 9(3), 1902–1908 (2013). ISSN 1819-544XGoogle Scholar
  36. 36.
    Larsen, P., Harbo, A., Klungsan, S., Asheim, T.C.: On the biosynthesis of some indole compounds in acetobacterxylinum. Physiol. Plant 15, 552–565 (1962)CrossRefGoogle Scholar
  37. 37.
    Lowry, O.H., Rosenbrough, N.J., Farr, A., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  38. 38.
    Lozano-Rodriguez, E., Hernandez, L.E., Bonay, P., Carpena-Ruiz, R.O.: Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J. Exp. Bot. 48(306), 123–128 (1997)CrossRefGoogle Scholar
  39. 39.
    Masojídek, J., Prášil, O.: The development of microalgal biotechnology in the Czech Republic. J. Ind. Microbiol. Biotechnol. 37(12), 1307–1317 (2010)CrossRefGoogle Scholar
  40. 40.
    Matilda Asiedu, R., Nilsen, O., Einar, L.: Effect of processing (sprouting and or fermentation) on sorghum and maize.1: proximate composition, minerals and fatty acids. Food Chem. 46, 351–353 (1993)CrossRefGoogle Scholar
  41. 41.
    Mohammed, S.S., Osman, A.G., Mohammed, A.M., Abdalla, A.S., Sherif, A.M., Rugheim, A.M.E.: Effects of organic and microbial fertilization on wheat growth and yield. Int. Res. J. Agric. Sci. Soil Sci. 2, 149–154 (2012)Google Scholar
  42. 42.
    Moon, S.S., Chen, J.L., Moore, R.E., Patterson, G.M.L.: Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca. J. Org. Chem. 57, 1097 (1992)CrossRefGoogle Scholar
  43. 43.
    Nandi, S., Das, G., Sen-Mandi, S.: ß-amylase activity as an index for germination potential in rice. Ann. Bot. 75, 463–467 (1995)CrossRefGoogle Scholar
  44. 44.
    Nik, M.M., Babaeian, M., Tavassoli, A.: Effect of seed size and genotype on germination characteristic and seed nutrient content of wheat. Sci. Res. Essays 6(9), 2019–2025 (2011)CrossRefGoogle Scholar
  45. 45.
    Nunnery, J.K., Mevers, E., Gerwick, W.H.: Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol. 21(6), 787 (2010)CrossRefGoogle Scholar
  46. 46.
    Onasanya, A., Ekperigin, M.M., Nwilene, F.E., Sere, Y., Onasanya, R.O.: Two pathotypes of Xanthomonas oryzae pv. oryzae virulence identified in West Africa. Curr. Res. Bacteriol. 2(2), 22–35 (2009)CrossRefGoogle Scholar
  47. 47.
    Oshodi, A.A., Olaofe, O., Hall, G.M.: Amino acid, fatty acid and mineral composition of pigeon pea (Cajanus cajans). Int. J. Food Sci. Nutr. 3, 187–191 (1985)Google Scholar
  48. 48.
    Öztürk, A., Caˇglar, O., Sahin, F.: Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J. Plant Nutr. Soil Sci. 166, 1–5 (2003)CrossRefGoogle Scholar
  49. 49.
    Pszczolkowski, W., Romanowska-duda, Z., Owczarczyk, A., Grzesik, M., Sakowicz, T., Chojnacka, A.: Influence of secondary metabolites from Cyanobacteria on the growth and plant development. Phycological Reports: Current advances in algal taxonomy and its applications: phylogenetic, ecological and applied perspective. Institute of Botany Polish, Academy of Sciences, Kraków, pp. 195–203 (2012)Google Scholar
  50. 50.
    Pszczolkowski, W., Romanowska-duda, Z.B., Grzesik, M., Chojnacka, A., Sakowicz, T.: Usefulnes secondary metabolites of Cyanobacteria in plant biotechnology. In: Wołowski, K., Kwandrans, J., Wojtal, A.Z. (eds.) Taxonomy the queen of science—the beauty of algae. Book of abstracts of the 29th International Phycological Conference, Krakow, pp. 146–147 (2010)Google Scholar
  51. 51.
    Ries, S.K., Everson, E.H.: Protein content and seed size relationship with seedling vigour of winter wheat cultivars. Agron. J. 65, 884–886 (1973)CrossRefGoogle Scholar
  52. 52.
    Royo, C., Ramdani, A., Moragues, M., Villegas, D.: Durum wheat under Mediterranean conditions as affected by seed size. J. Agron. Crop Sci. 192(4), 257–266 (2006)CrossRefGoogle Scholar
  53. 53.
    Rukavina, H., Kolak, I., Šarčević, H., Šatović, Z.: Seed size, yield and harvest characteristics of three Croatian spring malting barleys. Die Bodenkultur. 53(1), 9–12 (2002)Google Scholar
  54. 54.
    Saleh, N.B., Pfefferle, L.D., Elimelech, M.: Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ. Sci. Technol. 42(21), 7963–7969 (2008)CrossRefGoogle Scholar
  55. 55.
    Salim, H.H., Fayek, M.A., Sweidan, A.M.: Reproduction of briches apple cultivar by layering. Ann. Agric. Sci. Moshtohor. 9, 157–166 (1978)Google Scholar
  56. 56.
    Sanders: Effect of Inoculation with Azospirillum brasilense on development and yielding of maize under different cultivation conditions. Environ. Stud. 6, 506–509 (2000)Google Scholar
  57. 57.
    Saric, M., Kostroi, R., Cupina, T., Geric, I.: Chlorophyll determination Univ. U.Noven Sadu Prakitikum is Kiziologize Bilijaka Beogard, Haucna, Anjiga (1967)Google Scholar
  58. 58.
    Seshu, D.V., Krishnasamy, V., Sidiqque, S.B.: (1987) Seed vigor in rice: proceedings of the international workshop on rice seed health. Manila, Philippines, pp. 315–339Google Scholar
  59. 59.
    Singh, N.D.: Seed size and adventitious (nodal) roots as factors influencing the tolerance of wheat to waterlogging. Aust. J. Agric. Res. 54, 969–977 (2003)CrossRefGoogle Scholar
  60. 60.
    Snedecor, G.W., Cochran, W.G.: Statistical Methods, 7th edn., p. 511. Iowa State University Press, Towa (1982)Google Scholar
  61. 61.
    Stanier, R.Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205 (1971)Google Scholar
  62. 62.
    Stirk, W.A., Arthur, G.D., Lourens, A.F., Novak, O., Strnad, M., Staden, V. J: Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J. Appl. Phycol. 16, 31–39 (2004)CrossRefGoogle Scholar
  63. 63.
    Subramaniyan, V., Malliga, P.: Effect of cyanopith biofertilizer as basal and spray on Zea mays (Corn). Cultiv. Int. J. Environ. Sci. 2(2), 649 (2011). ISSN 0976–4402Google Scholar
  64. 64.
    Tiwari, V.N., Pathak, A.N., Lehril, K.: Manurial value of compost enriched with rock phosphate and microbial inoculants in green gram. J. Indian Soc. Soil. Sci. 36, 280–283 (1989)Google Scholar
  65. 65.
    Ujabadeniyi, A.O., Adebolu, J.T.: The effect of processing method on nutritional properties of ogi produced from three maize varieties. J. Food Agric. Environ. 3, 108–109 (2005)Google Scholar
  66. 66.
    Vonshak: A. Microalgae: laboratory techniques and outdoor biomass production. In: Coombs, J. J., Hall, D. (eds.) Techniques in Bioproductivity and Photosynthesis, 2nd edn. Pergamon Press, London (1985) (This volume has been translated to Spanish, Portuguese and Chinese).Google Scholar
  67. 67.
    Watanabe, F.S., Olsen, S.R.: Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. Proc. 29, 677–678 (1965)CrossRefGoogle Scholar
  68. 68.
    Wilson, W.A., Harrington, S.E., Woodman, W.L., Lee, M., Sorrells, M.E., McCouch, S.R.: Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics. 153(1), 453–473 (1999)Google Scholar
  69. 69.
    Zarrouk, C.: (1966) Contribution à l’étude d’une cyanophycée. Influence de divers’ facteurs physiques chimiques sur la croissance et la photosynthèse de Spirulina platensis maxima. Ph. D. Thesis, Université de Paris, ParisGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • R. Dineshkumar
    • 1
  • J. Subramanian
    • 1
  • J. Gopalsamy
    • 1
  • P. Jayasingam
    • 1
  • A. Arumugam
    • 1
  • S. Kannadasan
    • 1
  • P. Sampathkumar
    • 1
    Email author
  1. 1.Centre of Advanced Study in Marine Biology, Faculty of Marine SciencesAnnamalai UniversityParangipettaiIndia

Personalised recommendations