Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 1053–1064 | Cite as

Effect of SDS and Neutral Protease on the Release of Extracellular Polymeric Substances (EPS) from Mechanical Dewatered Sludge

  • Weiyun WangEmail author
  • Xuemei Gao
  • Jin Zhang
  • Tianhua Yang
  • Rundong Li
  • Yang Sun
Original Paper

Abstract

Extracellular Polymeric Substances (EPS) are complex high-molecular-weight secretions from microorganisms produced by cell lysis and adsorbed organic matter in wastewater that has crucial effects on sludge dewaterability. In this study, the effects of neutral protease and sodium dodecyl sulfate (SDS) on the amount and characteristics of EPS and on the moisture distribution in mechanical dewatered sludge were observed. The treatment was effective, and the content of EPS increased by 241% after treatment with 0.15 g/g total suspended solid (TSS) SDS and 0.03 g/g TSS neutral protease. Moreover, the ratio of PN/PS increased from 5.76 (blank) to 7.81 (treated with 0.10 g/g TSS SDS and 0.03 g/g TSS neutral protease). The results also showed that the content of bound water decreased from 7.40 to 6.29 g/g TSS in response to the addition of 0.15 g/g TSS SDS and 0.03 g/g TSS neutral protease, and the percentage of moisture with a lower binding force increased from 96.07 to 97.60% after treatment, which indicated that the dewaterability of sludge improved after treatment. Furthermore, 3D-EEM analysis indicated that the aromatic proteins and soluble microbial by-product-like materials were dominant fluorescence materials in EPS, and the content of simple aromatic proteins such as tyrosine and tryptophan in LB-EPS decreased after the addition of neutral protease and SDS, while the fluorescence materials in S-EPS and TB-EPS induced no obvious change between the original and treated sludge.

Keywords

Sludge Neutral protease SDS EPS 3D-EEM 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 51308349) and the National Natural Science Foundation of China (No. 51276119).

References

  1. 1.
    Xu, H., Tay, J. H., Foo, S. K., et al.: Removal of dissolved copper(II) and zinc(II) by aerobic granular sludge. Water Sci. Technol. 50(9), 155–160 (2004)Google Scholar
  2. 2.
    Adav, S. S., Lee, D. J., Show, K. Y., et al.: Aerobic granular sludge: recent advances. Biotechnol. Adv. 26(5), 411–423 (2008)Google Scholar
  3. 3.
    Sheng, G. P., Yu, H. Q., Li, X. Y.: Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol. Adv. 28(6), 882–894 (2010)Google Scholar
  4. 4.
    Yi, S., Tay, J. H., Maszenan, A. M., et al.: A culture-independent approach for studying microbial diversity in aerobic granules. Water Sci. Technol. 47(1), 283–290 (2003)Google Scholar
  5. 5.
    Wang, Z. W., Liu, Y., Tay, J. H.: Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl. Microbiol. Biotechnol. 69(4), 469–473 (2005)Google Scholar
  6. 6.
    Mcswain, B. S., Irvine, R. L., Hausner, M., et al.: Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol. 71(2), 1051–1057 (2005)Google Scholar
  7. 7.
    Yang, Z., Peng, X. F., Chen, M. Y., et al.: Intra-layer flow in fouling layer on membranes. J. Membr. Sci. 287(2), 280–286 (2007)Google Scholar
  8. 8.
    Block, J. C., Manem, J., Urbain, V.: Bioflocculation in activated sludge: an analytic approach. Water Res. 27(5), 829–838 (1993)Google Scholar
  9. 9.
    Dignac, M.-F., Urbain, V., Rybacki, D., et al.: Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Sci. Technol. 38(8), 45–53 (1998)Google Scholar
  10. 10.
    Lakshmi, M. V., Merrylin, J., Kavitha, S., et al.: Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains. Environ. Sci. Pollut. Res. 21(4), 2733–2743 (2014)Google Scholar
  11. 11.
    Merrylin, J., Kaliappan, S., Kumar, S. A., et al.: Effect of extra polymeric substance removal on sludge reduction potential of Bacillus licheniformis at its optimised pH condition. Water Environ. J. 28(1), 95–103 (2014)Google Scholar
  12. 12.
    Liu, H., Fang, H. H.: Extraction of extracellular polymeric substances (EPS) of sludge. J. Biotechnol. 95(3), 249–256 (2002)Google Scholar
  13. 13.
    Comte, S., Guibaud, G., Baudu, M.: Effect of extraction method on EPS from activated sludge: an HPSEC investigation. J. Hazard. Mater. 140(1–2), 129–137 (2007)Google Scholar
  14. 14.
    Li, X. Y., Yang, S. F.: Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 41(5), 1022–1030 (2007)MathSciNetGoogle Scholar
  15. 15.
    Poxon, T. L., Darby, J. L.: Extracellular polyanions in digested sludge: measurement and relationship to sludge dewaterability. Water Res. 31(4), 749–758 (1997)Google Scholar
  16. 16.
    Nielsen, P.H., Jahn, A.: Extraction of EPS. In: Wingender, J., Neu, T.R., Flemming, H.C. (eds.) Microbial Extracellular Polymeric Substances: Characterization, Structure and Function, pp. 49–72. Springer, Berlin (1999)Google Scholar
  17. 17.
    Laspidou, C. S., Rittmann, B. E.: A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36(11), 2711–2720 (2002)Google Scholar
  18. 18.
    Small, G. W.: Spectrometric identification of organic compounds. Vib. Spectrosc. 4(1), 123–124 (1992)Google Scholar
  19. 19.
    Jin, B., Wilén, B. M., Lant, P.: Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge. Chem. Eng. J. 98(1–2), 115–126 (2004)Google Scholar
  20. 20.
    Higgins, M. J., Novak, J. T.: Characterization of exocellular protein and its role in bioflocculation. J. Environ. Eng. 123(5), 479–485 (1997)Google Scholar
  21. 21.
    Goel, R., Mino, T., Satoh, H., et al.: Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor. Water Res. 32(7), 2081–2088 (1998)Google Scholar
  22. 22.
    Wang, W., Wang, L., Gao, X., et al.: Distribution characteristics of extracellular polymeric substance extracted from dewatered sludge treated with enzymes and thermal pressure. Waste Biomass Valoriz. 2017). doi: 10.1007/s12649-017-9941-x Google Scholar
  23. 23.
    Hosseini, F., Malekzadeh, F., Amirmozafari, N., et al.: Biodegradation of anionic surfactants by isolated bacteria from activated sludge. Int. J. Environ. Sci. Technol. 4(1), 127–132 (2007)Google Scholar
  24. 24.
    Devi, T. P., Ebenezer, A. V., Kumar, S. A., et al.: Effect of deflocculation on the efficiency of disperser induced dairy waste activated sludge disintegration and treatment cost. Bioresour. Technol. 167(167C), 151–158 (2014)Google Scholar
  25. 25.
    Kavitha, S., Stella, P. B.C., Kaliappan, S., et al.: Enhancement of anaerobic degradation of sludge biomass through surfactant assisted bacterial hydrolysis. Process Saf. Environ. Prot. 99, 207–215 (2016)Google Scholar
  26. 26.
    Kavitha, S., Pray, S. S., Yogalakshmi, K. N., et al.: Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production. Environ. Sci. Pollut. Res. 23(3), 2402–2414 (2016)Google Scholar
  27. 27.
    Luo, K., Yang, Q., Yu, J., et al.: Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresour. Technol. 102(14), 7103–7110 (2011)Google Scholar
  28. 28.
    Frølund, B., Griebe, T., Nielsen, P. H.: Enzymatic activity in the activated-sludge floc matrix. Appl. Microbiol. Biotechnol. 43(4), 755–761 (1995)Google Scholar
  29. 29.
    Raunkjær, K., Hvitved-Jacobsen, T., Nielsen, P. H.: Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res. 28(2), 251–262 (1994)Google Scholar
  30. 30.
    Sun, Y., Clinkenbeard, K. D., Clarke, C., et al.: Pasteurella haemolytica leukotoxin induced apoptosis of bovine lymphocytes involves DNA fragmentation. Vet. Microbiol. 65(2), 153–166 (1999)Google Scholar
  31. 31.
    Brown, M. J., Lester, J. N.: Comparison of bacterial extracellular polymer extraction methods. Appl. Environ. Microbiol. 40(2), 179–185 (1980)Google Scholar
  32. 32.
    Sheng, G. P., Yu, H. Q.: Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 40(6), 1233–1239 (2006)Google Scholar
  33. 33.
    Chen, W., Westerhoff, P., Leenheer, J. A., et al.: Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 37(24), 5701–5710 (2003)Google Scholar
  34. 34.
    Carstea, E. M., Bridgeman, J., Baker, A., et al.: Fluorescence spectroscopy for wastewater monitoring: a review. Water Res. 95, 205–219 (2016)Google Scholar
  35. 35.
    Kavitha, S., Jayashree, C., Adish, K. S., et al.: The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresour. Technol. 168(3), 159–166 (2014)Google Scholar
  36. 36.
    Jacquin, C., Lesage, G., Traber, J., et al.: Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR). Water Res. 118, 82–92 (2017)Google Scholar
  37. 37.
    Wang, Z., Gao, M., Wang, Z., et al.: Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor. Chemosphere 93(11), 2789–2795 (2013)Google Scholar
  38. 38.
    Huan Chen, Shungui, Zhou, Tianhong, Li: Impact of extracellular polymeric substances on the settlement ability of aerobic granular sludge. Environ. Technol. 31(14), 1601–1612 (2010)Google Scholar
  39. 39.
    Qu, F., Liang, H., He, J., et al.: Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Res. 46(9), 2881–2890 (2012)Google Scholar
  40. 40.
    Swietlik, J., Dabrowska, A., Raczyk-Stanisławiak, U., et al.: Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Res. 38(3), 547–558 (2004)Google Scholar
  41. 41.
    Neyens, E., Baeyens, J., Dewil, R., et al.: Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 106(2–3), 83–92 (2004)Google Scholar
  42. 42.
    Kaspersen, J. D., Søndergaard, A., Madsen, D. J., et al.: Refolding of SDS-Unfolded Proteins by Nonionic Surfactants. Biophys. J. 112(8), 1609–1620 (2017)Google Scholar
  43. 43.
    Peredomancilla, D., Dominguez, H.: Adsorption of phenol molecules by sodium dodecyl sulfate (SDS) surfactants deposited on solid surfaces: a computer simulation study. J. Mol. Graph. Model. 65, 108–112 (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.College of Energy and EnvironmentShenyang Aerospace UniversityShenyangChina
  2. 2.Key Laboratory of Clean Energy, Liaoning ProvinceShenyangChina

Personalised recommendations