Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 889–897 | Cite as

Improving Polyphenol Extraction from Lemon Residues by Pulsed Electric Fields

  • Sara Peiró
  • Elisa Luengo
  • Francisco Segovia
  • Javier Raso
  • María Pilar AlmajanoEmail author
Original Paper

Abstract

In this contribution, the influence of Pulsed Electric Fields (PEF) of different intensities (3–9 kV/cm and 0–300 μs) on the extraction of Total Phenols from lemon peel residues by pressing was investigated. According to the cellular disintegration index, the optimum treatment time for the increase in permeability was determined as 30 pulses of 30 μs. It was determined that the effect of PEF was independent of lemon residue size. The effectiveness of pressing-assisted extraction was evaluated by measuring the Total Phenol Content (TPC), the real antioxidant capacity and the concentrations of the main lemon polyphenols, the flavonones hesperidin and eriocitrin. The variables studied in the extraction were time, pressure applied and intensity of the electric fields. This study concludes that electric field intensity of 7 kV/cm increased the efficiency of polyphenol extraction by 300%, giving maximum values of 84 mg of hesperidin in 100 g FW and 176 mg of eriocitrin in 100 g FW. Thus, it was concluded that PEF provides a new methodology to improve polyphenol extraction with a non-thermal, environment-friendly technology, and this represents a method for increasing economic benefits of industrial processes.

Keywords

Lemon waste Phenols Antioxidant Pulsed electric fields (PEF) Pressuring Extraction 

Notes

Acknowledgements

The author S. Peiró gratefully acknowledge the financial support of “Talent Empresa (TEM-DG) 2010” Program from AGAUR, Generalitat de Catalunya. The authors would like to thank Michael H. Gordon for his valuable revision of the manuscript.

References

  1. 1.
    González-Molina, E., Domínguez-Perles, R., Moreno, D., García-Viguera, C.: Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 51, 327–345 (2010)CrossRefGoogle Scholar
  2. 2.
    Boluda-Aguilar, M., López-Gómez, A.: Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pretreated with steam explosion. Ind. Crops Prod. 41, 188–197 (2013)CrossRefGoogle Scholar
  3. 3.
    Mahro, B., Timm, M.: Potential of biowaste from the food industry as a biomass resource. Eng. Life Sci. 7, 457–468 (2007)CrossRefGoogle Scholar
  4. 4.
    Alamed, J., Chaiyasit, W., McClements, D.J., Decker, E.: Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 57, 2969–2976 (2009)CrossRefGoogle Scholar
  5. 5.
    Skowyra, M., Falguera, V., Gallego, G., Peiró, S., Almajano, M.P.: Antioxidant properties of aqueous and ethanolic extracts of tara (Caesalpinia spinosa) pods in vitro and in model food emulsions. J. Sci. Food Agric. 94, 911–918 (2014)CrossRefGoogle Scholar
  6. 6.
    Wijngaard, H., Hossain, M.B., Rai, D.K., Brunton, N.: Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 46, 505–513 (2012)CrossRefGoogle Scholar
  7. 7.
    Gil-Chávez, J., Villa, J., Ferando Ayala-Zavala, J., Basilio Heredia, J., Sepulveda, D., Yahia, E.M., González-Aguilar, G.: Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr. Rev. Food Sci. Food Saf. 12, 5–23 (2013)CrossRefGoogle Scholar
  8. 8.
    Plaza, M., Amigo-Benavent, M., del Castillo, M.D., Ibáñez, E., Herrero, M.: Neoformation of antioxidants in glycation model systems treated under subcritical water extraction conditions. Food Res. Int. 43, 1123–1129 (2010)CrossRefGoogle Scholar
  9. 9.
    Al Bittar, S., Périno-Issartier, S., Dangles, O., Chemat, F.: An innovative grape juice enriched in polyphenols by microwave-assisted extraction. Food Chem. 141, 3268–3272 (2013)CrossRefGoogle Scholar
  10. 10.
    Şahin, S., Şamlı, R.: Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 20, 595–602 (2013)CrossRefGoogle Scholar
  11. 11.
    Zderic, A., Zondervan, E., Meuldijk, J.: Breakage of cellular tissue by pulsed electric field: extraction of polyphenols from fresh tea leaves. Chem. Eng. Trans. 32, 1795–1800 (2013)Google Scholar
  12. 12.
    Luengo, E., Martínez, J.M., Coustets, M., Álvarez, I., Teissié, J., Rols, M.-P., Raso, J.: A comparative study on the effects of millisecond- and microsecond-pulsed electric field treatments on the permeabilization and extraction of pigments from Chlorella vulgaris. J. Membr. Biol. 248, 883–891 (2015)CrossRefGoogle Scholar
  13. 13.
    Puértolas, E., Cregenzán, O., Luengo, E., Álvarez, I., Raso, J.: Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chem. 136, 1330–1336 (2013)CrossRefGoogle Scholar
  14. 14.
    Luengo, E., Franco, E., Ballesteros, F., Álvarez, I., Raso, J.: Winery trial on application of pulsed electric fields for improving vinification of Garnacha Grapes. Food Bioprocess Technol. 7, 1457–1464 (2014)CrossRefGoogle Scholar
  15. 15.
    Puértolas, E., Saldaña, G., Álvarez, I., Raso, J.: Effect of pulsed electric field processing of red grapes on wine chromatic and phenolic characteristics during aging in oak barrels. J. Agric. Food Chem. 58, 2351–2357 (2010)CrossRefGoogle Scholar
  16. 16.
    Puértolas, E., López, N., Condón, S., Raso, J., Alvarez, I.: Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int. J. Food Microbiol. 130, 49–55 (2009)CrossRefGoogle Scholar
  17. 17.
    Monfort, S., Saldaña, G., Condón, S., Raso, J., Álvarez, I.: Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiol. 30, 393–399 (2012)CrossRefGoogle Scholar
  18. 18.
    Jaeger, H., Schulz, M., Lu, P., Knorr, D.: Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale. Innov. Food Sci. Emerg. Technol. 14, 46–60 (2012)CrossRefGoogle Scholar
  19. 19.
    Moussa-Ayoub, T.E., Jaeger, H., Youssef, K., Knorr, D., El-Samahy, S., Kroh, L.W., Rohn, S.: Technological characteristics and selected bioactive compounds of Opuntia dillenii cactus fruit juice following the impact of pulsed electric field pre-treatment. Food Chem. 210, 249–261 (2016)CrossRefGoogle Scholar
  20. 20.
    Abenoza, M., Benito, M., Saldaña, G., Álvarez, I., Raso, J., Sánchez-Gimeno, C.: Effects of pulsed electric field on yield extraction and quality of olive oil. Food Bioprocess Technol. 6, 1367–1373 (2012)CrossRefGoogle Scholar
  21. 21.
    Saldaña, G., Cebrián, G., Abenoza, M., Sánchez-Gimeno, C., Álvarez, I., Raso, J.: Assessing the efficacy of PEF treatments for improving polyphenol extraction during red wine vinifications. Innov. Food Sci. Emerg. Technol. 39, 179–187 (2017)CrossRefGoogle Scholar
  22. 22.
    Segovia, F.J., Luengo, E., Corral-Pérez, J.J., Raso, J., Almajano, M.P.: Improvements in the aqueous extraction of polyphenols from borage (Borago officinalis L.) leaves by pulsed electric fields: pulsed electric fields (PEF) applications. Ind. Crops Prod. 65, 390–396 (2015)CrossRefGoogle Scholar
  23. 23.
    Barba, F.J., Zhu, Z., Koubaa, M., Sant’Ana, A.S., Orlien, V.: Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci. Technol. 49, 96–109 (2016)CrossRefGoogle Scholar
  24. 24.
    Luengo, E., Álvarez, I., Raso, J.: Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov. Food Sci. Emerg. Technol. 17, 79–84 (2013)CrossRefGoogle Scholar
  25. 25.
    Luengo, E., Álvarez, I., Raso, J.: Improving carotenoid extraction from tomato waste by pulsed electric fields. Front. Nutr. 1, 12 (2014)CrossRefGoogle Scholar
  26. 26.
    Ade-Omowaye, B.I.O., Angersbach, A., Taiwo, K.A., Knorr, D.: Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends Food Sci. Technol. 12, 285–295 (2001)CrossRefGoogle Scholar
  27. 27.
    Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  28. 28.
    Ou, B., Hampsch-Woodill, M., Prior, R.L.: Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49, 4619–4626 (2001)CrossRefGoogle Scholar
  29. 29.
    López, N., Puértolas, E., Condón, S., Raso, J., Álvarez, I.: Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT—Food Sci. Technol. 42, 1674–1680 (2009)Google Scholar
  30. 30.
    Ersus, S., Barrett, D.M.: Determination of membrane integrity in onion tissues treated by pulsed electric fields: use of microscopic images and ion leakage measurements. Innov. Food Sci. Emerg. Technol. 11, 598–603 (2010)CrossRefGoogle Scholar
  31. 31.
    Janositz, A., Noack, A.-K., Knorr, D.: Pulsed electric fields and their impact on the diffusion characteristics of potato slices. LWT—Food Sci. Technol. 44, 1939–1945 (2011)Google Scholar
  32. 32.
    Puértolas, E., Saldaña, G., Condón, S., Álvarez, I., Raso, J.: Evolution of polyphenolic compounds in red wine from Cabernet Sauvignon grapes processed by pulsed electric fields during aging in bottle. Food Chem. 119, 1063–1070 (2010)CrossRefGoogle Scholar
  33. 33.
    Parniakov, O., Lebovka, N.I., Van Hecke, E., Vorobiev, E.: Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus Bisporus). Food Bioprocess Technol. 1–10 (2013)Google Scholar
  34. 34.
    López, N., Puértolas, E., Hernández-Orte, P., Álvarez, I., Raso, J.: Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshly fermented model wines obtained after different maceration times. LWT—Food Sci. Technol. 42, 1225–1231 (2009)Google Scholar
  35. 35.
    Spigno, G., Tramelli, L., De Faveri, D.M.: Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 81, 200–208 (2007)CrossRefGoogle Scholar
  36. 36.
    Zhang, Y., Sun, J., Hu, X., Liao, X.: Spectral alteration and degradation of cyanidin-3-glucoside exposed to pulsed electric field. J. Agric. Food Chem. 58, 3524–3531 (2010)CrossRefGoogle Scholar
  37. 37.
    García-Salas, P., Gómez-Caravaca, A.M., Arráez-Román, D., Segura-Carretero, A., Guerra-Hernández, E., García-Villanova, B., Fernández-Gutiérrez, A.: Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder. Food Chem. 141, 869–878 (2013)CrossRefGoogle Scholar
  38. 38.
    Rusaczonek, A., Swiderski, F., Waszkiewicz-Robak, B.: Antioxidant properties of tea and herbal infusions—a short report. Polish J. Food Nutr. Sci. 60, 33–35 (2010)Google Scholar
  39. 39.
    Gironés-Vilaplana, A., Mena, P., García-Viguera, C., Moreno, D.: A novel beverage rich in antioxidant phenolics: maqui berry (Aristotelia chilensis) and lemon juice. LWT—Food Sci. Technol. 47, 279–286 (2012)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Sara Peiró
    • 1
    • 2
  • Elisa Luengo
    • 3
  • Francisco Segovia
    • 1
  • Javier Raso
    • 3
  • María Pilar Almajano
    • 1
    Email author
  1. 1.Chemical Engineering DepartmentTechnical University of CataloniaBarcelonaSpain
  2. 2.IRIS-Innovació i Recerca Industrial i SostenibleS.L. Parc Mediterrani de la TecnologiaCastelldefelsSpain
  3. 3.Tecnología de los Alimentos, Facultad de VeterinariaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations