Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 827–837 | Cite as

Hydrogen Production by Clostridium cellulolyticum a Cellulolytic and Hydrogen-Producing Bacteria Using Sugarcane Bagasse

  • Juliana K. BragaEmail author
  • Angela A. Abreu
  • Fabrício Motteran
  • Maria Alcina Pereira
  • Maria Madalena Alves
  • Maria Bernadete A. Varesche
Original Paper
  • 203 Downloads

Abstract

Hydrogen (H2) production by Clostridium cellulolyticum was investigated. Anaerobic batch reactors were operated with cellobiose (2 g/L) and pretreated sugarcane bagasse (SCB) (2 g/L) using a hydrothermal system to observe the effects of carbon source on H2 production. Salts (NH4Cl, NaCl, MgCl2 and CaCl2) and vitamins (biotin, nicotinamide, p-aminobenzoic acid, thiamine, pantothenic acid, pyridoxamine, cyanocobalamin, riboflavin, folic and lipoic acid) were supplemented from stock solutions at different volumes percentages, ranging from 0 to 5%. The optimal concentration was 2.5% and the strain used both substrates and produced H2 which was higher for cellobiose (14.9 ± 0.2 mmol/L) than for SCB (7.6 ± 0.2 mmol/L), although the λ phase was much smaller when SCB (59.9 h) was used in relation to the assay with cellobiose (164 h). H2 was produced from SCB primarily through the fermentation of lactic and acetic acids.

Keywords

Acetic acid Cellobiose Lactic acid Lignocellulosic residue SCB 

Notes

Acknowledgements

This project was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2014/11851­4 and 2013/20196-7.

References

  1. 1.
    Schlapbach, L., Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001). doi: 10.1038/35104634 CrossRefGoogle Scholar
  2. 2.
    Kapdan, I.K., Kargi, F.: Bio-hydrogen production from waste materials. Enzym. Microb. Technol. 38, 569–582 (2006). doi: 10.1016/j.enzmictec.2005.09.015 CrossRefGoogle Scholar
  3. 3.
    Ntaikou, I., Antonopoulou, G., Lyberatos, G.: Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valorization 1, 21–39 (2010). doi: 10.1007/s12649-009-9001-2 CrossRefGoogle Scholar
  4. 4.
    Bayer, E.A., Lamed, R.: The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource? Biodegradation 3, 171–188 (1992). doi: 10.1007/BF00129082 CrossRefGoogle Scholar
  5. 5.
    Lo, Y.C., Saratale, G.D., Chen, W.M., Bai, M.D., Chang, J.S.: Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme Microb. Technol. 44, 417–425 (2009). doi: 10.1016/j.enzmictec.2009.03.002 CrossRefGoogle Scholar
  6. 6.
    Oh, Y.K., Seol, E.H., Kim, J.R., Park, S.: Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrog. Energy 28, 1353–1359 (2003). doi: 10.1016/S0360-3199(03)00024-7 CrossRefGoogle Scholar
  7. 7.
    Oh, Y.K., Seol, E., Lee, E.Y., Park, S.: Fermentative hydrogen production by a new chemoheterotrophic bacterium rhodopseudomonas palustris P4. Int. J. Hydrog. Energy 27, 1373–1379 (2002). doi: 10.1016/S0360-3199(02)00100-3 CrossRefGoogle Scholar
  8. 8.
    Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)CrossRefGoogle Scholar
  9. 9.
    Liu, G., Shen, J.: Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J. Biosci. Bioeng. 98, 251–256 (2004). doi: 10.1016/S1389-1723(04)00277-4 CrossRefGoogle Scholar
  10. 10.
    Shin, H., Youn, J., Kim, S.: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrog. Energy 29, 1355–1363 (2004). doi: 10.1016/j.ijhydene.2003.09.011 CrossRefGoogle Scholar
  11. 11.
    Lay, J., Fan, K.S., Chang, J., Ku, C.H.: Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int. J. Hydrog. Energy 28, 1361–1367 (2003). doi: 10.1016/S0360-3199(03)00027-2 CrossRefGoogle Scholar
  12. 12.
    Islam, R., Sparling, R., Cicek, N., Levin, D.: Optimization of influential nutrients during direct cellulose fermentation into hydrogen by Clostridium thermocellum. Int. J. Mol. Sci. 16, 3116–3132 (2015). doi: 10.3390/ijms16023116 CrossRefGoogle Scholar
  13. 13.
    Pan, C.M., Fan, Y.T., Xing, Y., Hou, H.W., Zhang, M.L.: Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. Bioresour. Technol. 99, 3146–3154 (2008). doi: 10.1016/j.biortech.2007.05.055 CrossRefGoogle Scholar
  14. 14.
    Wang, J., Wan, W.: Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology. Int. J. Hydrog. Energy 34, 255–261 (2009). doi: 10.1016/j.ijhydene.2008.10.010 CrossRefGoogle Scholar
  15. 15.
    Chong, M.-L., Abdul Rahman, N.A., Rahim, R.A., Aziz, S.A., Shirai, Y., Hassan, M.A.: Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. Int. J. Hydrog. Energy 34, 7475–7482 (2009). doi: 10.1016/j.ijhydene.2009.05.088 CrossRefGoogle Scholar
  16. 16.
    Lamed, R., Bayer, E.A.: The cellulosome of Clostridium thermocellum. Adv. Appl. Microbiol. 33, 1–46 (1988)CrossRefGoogle Scholar
  17. 17.
    Sato, K., Goto, S., Yonemura, S., Sekine, K., Okuma, E., Takagi, Y., Hon-Nami, K., Saiki, T.: Effect of yeast extract and vitamin B(12) on ethanol production from cellulose by Clostridium thermocellum I-1-B. Appl. Environ. Microbiol. 58, 734–736 (1992)Google Scholar
  18. 18.
    Smith, J.S., Hillier, A.J., Lees, G.J.: The nature of the stimulation of the growth of Streptococcus lactis by yeast extract. J. Dairy Res. 42, 123–138 (1975)CrossRefGoogle Scholar
  19. 19.
    Johnson, E.A., Madia, A., Demain, A.L.: Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl. Environ. Microbiol. 41, 1060–1062 (1981)Google Scholar
  20. 20.
    Lawson Anani Soh, A., Ralambotiana, H., Ollivier, B., Prensier, G., Tine, E., Garcia, J.-L.: Clostridium thermopalmarium sp. nov., a moderately thermophilic butyrate-producing bacterium isolated from palm wine in Senegal. Syst. Appl. Microbiol. 14, 135–139 (1991). doi: 10.1016/S0723-2020(11)80291-2 CrossRefGoogle Scholar
  21. 21.
    Moomaw, A.S., Maguire, M.E.: The unique nature of Mg2+ channels. Physiology 23, 275–285 (2008). doi: 10.1152/physiol.00019.2008 CrossRefGoogle Scholar
  22. 22.
    Ingram, K.M.D.: and L.O.: Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl Environ. Microbiol. 52, 975–981 (1986)Google Scholar
  23. 23.
    Thanonkeo, P., Laopaiboon, P., Sootsuwan, K., Yamada, M.: Magnesium ions improve growth and ethanol production of Zymomonas mobilis under heat or ethanol stress. Biotechnology 6, 112–119 (2007). doi: 10.3923/biotech.2007.112.119 CrossRefGoogle Scholar
  24. 24.
    Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J.J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., Farrow, J.A.E.: The phylogeny of the genus clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44, 812–826 (1994). doi: 10.1099/00207713-44-4-812 CrossRefGoogle Scholar
  25. 25.
    Petitdemange, E., Caillet, F., Giallo, J., Gaudin, C.: Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic: species from decayed grass. Int. J. Syst. Bacteriol. 34, 155–159 (1984). doi: 10.1099/00207713-34-2-155 CrossRefGoogle Scholar
  26. 26.
    Desvaux, M., Guedon, E., Petitdemange, H.: Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66, 2461–2470 (2000). doi: 10.1128/AEM.66.6.2461-2470.2000 CrossRefGoogle Scholar
  27. 27.
    Saxena, I.M., Brown, R.M., Dandekar, T.: Structure–function characterization of cellulose synthase: relationship to other glycosyltransferases. Phytochemistry 57, 1135–1148 (2001). doi: 10.1016/S0031-9422(01)00048-6 CrossRefGoogle Scholar
  28. 28.
    Mohand-Oussaid, O., Payot, S., Guedon, E., Gelhaye, E., Youyou, A., Petitdemange, H.: The extracellular xylan degradative system in Clostridium cellulolyticum cultivated on xylan: evidence for cell-free cellulosome production. J. Bacteriol. 181, 4035–4040 (1999)Google Scholar
  29. 29.
    Reddy, N., Yang, Y.: Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 23, 22–27 (2005). doi: 10.1016/j.tibtech.2004.11.002 CrossRefGoogle Scholar
  30. 30.
    Sun, J., Sun, X., Sun, R., Su, Y.: Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr. Polym. 56, 195–204 (2004). doi: 10.1016/j.carbpol.2004.02.002 CrossRefGoogle Scholar
  31. 31.
    Silva, V.F.N., Arruda, P. V., Felipe, M.G.A., Gonçalves, A.R., Rocha, G.J.M.: Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J. Ind. Microbiol. Biotechnol. 38, 809–817 (2011). doi: 10.1007/s10295-010-0815-5 CrossRefGoogle Scholar
  32. 32.
    da Cruz, S.H., Dien, B.S., Nichols, N.N., Saha, B.C., Cotta, M.A.: Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF. J. Ind. Microbiol. Biotechnol. 39, 439–447 (2012). doi: 10.1007/s10295-011-1051-3 CrossRefGoogle Scholar
  33. 33.
    Nath, K., Das, D.: Modeling and optimization of fermentative hydrogen production. Bioresour. Technol. 102, 8569–8581 (2011). doi: 10.1016/j.biortech.2011.03.108 CrossRefGoogle Scholar
  34. 34.
    Jacquet, N., Quiévy, N., Vanderghem, C., Janas, S., Blecker, C., Wathelet, B., Devaux, J., Paquot, M.: Influence of steam explosion on the thermal stability of cellulose fibres. Polym. Degrad. Stab. 96, 1582–1588 (2011). doi: 10.1016/j.polymdegradstab.2011.05.021 CrossRefGoogle Scholar
  35. 35.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). doi: 10.1021/ac60111a017 CrossRefGoogle Scholar
  36. 36.
    Zwietering, M., Jongenburger, I., Rombouts, F., Van’t Riet, K.: Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990)Google Scholar
  37. 37.
    Pelczar, M.J. Jr., Chan, E.C.S., Krieg, N.: Microbiologia: Conceitos e Aplicações. Makron books, São Paulo (1996)Google Scholar
  38. 38.
    Madigan, M.T., Martinko, J.M., Dunlap, P. V., Clark, D.P.: Microbiologia de Brock. Artmed, Porto Alegre (2010)Google Scholar
  39. 39.
    Babalola, O.O.: Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32, 1559–1570 (2010). doi: 10.1007/s10529-010-0347-0 CrossRefGoogle Scholar
  40. 40.
    Gehin, A., Gelhaye, E., Raval, G., Petitdemange, H.: Clostridium cellulolyticum viability and sporulation under cellobiose starvation conditions. Appl. Environ. Microbiol. 61, 868–871 (1995)Google Scholar
  41. 41.
    Lin, C., Lay, C.: A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrog. Energy 30, 285–292 (2005). doi: 10.1016/j.ijhydene.2004.03.002 CrossRefGoogle Scholar
  42. 42.
    Giallo, J., Gaudin, C., Belaich, J.-P.: Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl. Environ. Microbiol. 49, 1216–1221 (1985)Google Scholar
  43. 43.
    Gibson, A.M., Bratchell, N., Roberts, T.A.: The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J. Appl. Bacteriol. 62, 479–490 (1987). doi: 10.1111/j.1365-2672.1987.tb02680.x CrossRefGoogle Scholar
  44. 44.
    Datar, R., Huang, J., Maness, P., Mohagheghi, A., Czernik, S., Chornet, E.: Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int. J. Hydrog. Energy 32, 932–939 (2007). doi: 10.1016/j.ijhydene.2006.09.027 CrossRefGoogle Scholar
  45. 45.
    Ratti, R.P., Botta, L.S., Sakamoto, I.K., Silva, E.L., Varesche, M.B.A.: Production of H2 from cellulose by rumen microorganisms: effects of inocula pre-treatment and enzymatic hydrolysis. Biotechnol. Lett. 36, 537–546 (2014). doi: 10.1007/s10529-013-1395-z CrossRefGoogle Scholar
  46. 46.
    Hu, Z.-H., Wang, G., Yu, H.-Q.: Anaerobic degradation of cellulose by rumen microorganisms at various pH values. Biochem. Eng. J. 21, 59–62 (2004). doi: 10.1016/j.bej.2004.05.004 CrossRefGoogle Scholar
  47. 47.
    Ratti, R.P., Botta, L.S., Sakamoto, I.K., Varesche, M.B.A.: Microbial diversity of hydrogen-producing bacteria in batch reactors fed with cellulose using leachate as inoculum. Int. J. Hydrog. Energy 38, 9707–9717 (2013). doi: 10.1016/j.ijhydene.2013.05.089 CrossRefGoogle Scholar
  48. 48.
    Fangkum, A., Reungsang, A.: Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: effects of initial pH and substrate concentration. Int. J. Hydrog. Energy 36, 8687–8696 (2011). doi: 10.1016/j.ijhydene.2010.05.119 CrossRefGoogle Scholar
  49. 49.
    Ratti, R.P., Delforno, T.P., Sakamoto, I.K., Varesche, M.B.A.: Thermophilic hydrogen production from sugarcane bagasse pretreated by steam explosion and alkaline delignification. Int. J. Hydrog. Energy 40, 6296–6306 (2015). doi: 10.1016/j.ijhydene.2015.03.067 CrossRefGoogle Scholar
  50. 50.
    Nissilä, M.E., Tähti, H.P., Rintala, J.A., Puhakka, J.A.: Thermophilic hydrogen production from cellulose with rumen fluid enrichment cultures: effects of different heat treatments. Int. J. Hydrog. Energy 36, 1482–1490 (2011). doi: 10.1016/j.ijhydene.2010.11.010 CrossRefGoogle Scholar
  51. 51.
    Maeda, R.N., Serpa, V.I., Rocha, V.A.L., Mesquita, R.A.A., Anna, L.M.M.S., de Castro, A.M., Driemeier, C.E., Pereira, N., Polikarpov, I.: Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem. 46, 1196–1201 (2011). doi: 10.1016/j.procbio.2011.01.022 CrossRefGoogle Scholar
  52. 52.
    Rocha, G.J.M., Gonçalves, A.R., Oliveira, B.R., Olivares, E.G., Rossell, C.E.V.: Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crops Prod. 35, 274–279 (2012). doi: 10.1016/j.indcrop.2011.07.010 CrossRefGoogle Scholar
  53. 53.
    Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrog. Energy 34, 799–811 (2009). doi: 10.1016/j.ijhydene.2008.11.015 CrossRefGoogle Scholar
  54. 54.
    Sobrun, Y., Bhaw-Luximon, A., Jhurry, D., Puchooa, D.: Isolation of lactic acid bacteria from sugar cane juice and production of lactic acid from selected improved strains. Adv. Biosci. Biotechnol. 3, 398–407 (2012). doi: 10.4236/abb.2012.34057 CrossRefGoogle Scholar
  55. 55.
    Gomes, F.C.O., Silva, C.L.C., Vianna, C.R., Lacerda, I.C.A., Borelli, B.M., Nunes, Á.C., Franco, G.R., Mourão, M.M., Rosa, C.A.: Identification of lactic acid bacteria associated with traditional cachaça fermentations. Braz. J. Microbiol. 41, 486–492 (2010). doi: 10.1590/S1517-83822010000200031 CrossRefGoogle Scholar
  56. 56.
    Lo, Y.C., Huang, C.Y., Cheng, C.L., Lin, C.Y., Chang, J.S.: Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1. Bioresour. Technol. 102, 8384–8392 (2011). doi: 10.1016/j.biortech.2011.03.064 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Juliana K. Braga
    • 1
    Email author
  • Angela A. Abreu
    • 2
  • Fabrício Motteran
    • 1
  • Maria Alcina Pereira
    • 2
  • Maria Madalena Alves
    • 2
  • Maria Bernadete A. Varesche
    • 1
  1. 1.Department of Hydraulics and Sanitation, School of Engineering of São CarlosUniversity of São PauloSão CarlosBrazil
  2. 2.CEB – Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations