Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 789–795 | Cite as

Fishmeal Wastewater as A Low-Cost Nitrogen Source for γ-Polyglutamic Acid Production Using Bacillus subtilis

  • Chao ZhangEmail author
  • Dao-Ji Wu
  • Jie Jia
  • Hong-Qi Yang
Original Paper
  • 120 Downloads

Abstract

Fishmeal wastewater, a fishmeal processing waste, was used as culture medium to study the effect of Bacillus subtilis A3 on the production of γ-polyglutamic acid (γ-PGA). The results showed that the optimum concentration of chemical oxygen demand (CODCr) for fishmeal wastewater was 15 g/L. Moreover, addition of 30 g/L glucose and 25 g/L glutamic acid in the medium was beneficial to cell growth and production of γ-PGA. The study also showed that the high salinity of wastewater had little effect on cell growth and production of γ-PGA after dilution. Thus, the optimal medium consisted of COD 15, 30 g/L glucose, 25 g/L glutamic acid, in which the average yield of γ-PGA (25.07 ± 0.34 g/L) was obtained. The study suggested that fishmeal wastewater can be a replacement for nitrogen source for γ-PGA production, and hence it can be the cost-effective alternative in γ-PGA production. Meanwhile, the process can offset the disposal costs of the wastes.

Keywords

Bacillus subtilis Fishmeal wastewater Nitrogen source γ-Polyglutamic acid 

Notes

Acknowledgements

This research was financially supported by State Key Laboratory of Microbial Technology (M2012-14), Shandong University.

References

  1. 1.
    Shih, I.-L., Van, Y.-T., Sau, Y.-Y.: Antifreeze activities of poly(γ-glutamic acid) produced by Bacillus licheniformis. Biotechnol. Lett. 25(20), 1709–1712 (2003)CrossRefGoogle Scholar
  2. 2.
    Ogunleye, A., Bhat, A., Irorere, V.U., Hill, D., Williams, C., Radecka, I.: Poly-γ-glutamic acid: production, properties and applications. Microbiology. 161(Pt 1), 1–17 (2015)CrossRefGoogle Scholar
  3. 3.
    Feng, J., Gu, Y., Quan, Y., Cao, M., Gao, W., Zhang, W., Wang, S., Yang, C., Song, C.: Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metab. Eng. 32, 106–115 (2015)CrossRefGoogle Scholar
  4. 4.
    Taki, K., Arita, I., Satoh, M., Komiyama, J.: Selective transport of d,l-tryptophan through poly(l-glutamic acid) membranes. J. Polym. Sci. B 37(10), 1035–1041 (1999)CrossRefGoogle Scholar
  5. 5.
    Karmaker, S., Saha, T.K.: Chelation of vanadium(IV) by a natural and edible biopolymer poly(γ-glutamic acid) in aqueous solution: structure and binding constant of complex. Macromol. Biosci. 8(2), 171–176 (2008)CrossRefGoogle Scholar
  6. 6.
    Wei, X., Tian, G., Ji, Z., Chen, S.: A new strategy for enhancement of poly-γ-glutamic acid production by multiple physicochemical stresses in Bacillus licheniformis. J.Chem. Technol. Biotechnol. 90(4), 709–713 (2015)CrossRefGoogle Scholar
  7. 7.
    Luo, Z., Guo, Y., Liu, J., Qiu, H., Zhao, M., Zou, W., Li, S.: Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels (2016). doi: 10.1186/s13068-016-0537-7 Google Scholar
  8. 8.
    Mohammadi, P., Tabatabaei, M., Nikbakht, A.M., Farhadi, K., Castaldi, M.J.: Simultaneous energy recovery from waste polymers in biodiesel and improving fuel properties. Waste Biomass Valorization. 4(1), 105–116 (2013)CrossRefGoogle Scholar
  9. 9.
    Kongklom, N., Luo, H., Shi, Z., Pechyen, C., Chisti, Y., Sirisansaneeyakul, S.: Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochem. Eng. J. 100, 67–75 (2015)CrossRefGoogle Scholar
  10. 10.
    Grigiante, M., Ischia, M., Baratieri, M., Maschio, R., Ragazzi, M.: Pyrolysis analysis and solid residue stabilization of polymers, waste tyres, spruce sawdust and sewage sludge. Waste Biomass Valorization 1(4), 381–393 (2010)CrossRefGoogle Scholar
  11. 11.
    Ren, Y., Huang, B., Meng, Y., Wei, L., Zhang, C.: Metabolic and phylogenetic analyses based on nitrogen in a new poly-γ-glutamic acid-producing strain of Bacillus subtilis. Biotechnol. Lett. 37(6), 1221–1226 (2015)CrossRefGoogle Scholar
  12. 12.
    Kunioka, M.: Biodegradable water absorbent synthesized from bacterial poly(amino acid)s. Macromol. Biosci. 4(3), 324–329 (2004)CrossRefGoogle Scholar
  13. 13.
    Visakh, P.M., Thomas, S.: Preparation of Bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valorization. 1(1), 121–134 (2010)CrossRefGoogle Scholar
  14. 14.
    Das, R.K., Brar, S.K., Verma, M.: Valorization of egg shell biowaste and brewery wastewater for the enhanced production of fumaric acid. Waste Biomass Valorization. 6(4), 535–546 (2015)CrossRefGoogle Scholar
  15. 15.
    Tang, B., Lei, P., Xu, Z., Jiang, Y., Xu, Z., Liang, J., Feng, X., Xu, H.: Highly efficient rice straw utilization for poly-(γ-glutamic acid) production by Bacillus subtilis NX-2. Bioresour. Technol. 193, 370–376 (2015)CrossRefGoogle Scholar
  16. 16.
    Kritikaki, A., Zaharaki, D., Komnitsas, K.: Valorization of industrial wastes for the production of glass–ceramics. Waste Biomass Valorization. 7(4), 885–898 (2016)CrossRefGoogle Scholar
  17. 17.
    Zeng, W., Liang, Z., Li, Z., Bian, Y., Li, Z., Tang, Z., Chen, G.: Regulation of poly-γ-glutamic acid production in Bacillus subtilis GXA-28 by potassium. J. Taiwan Inst. Chem. Eng. 61, 83–89 (2016)CrossRefGoogle Scholar
  18. 18.
    Routray, W., Dave, D., Ramakrishnan, V.V., Murphy, W.: Production of high quality fish oil by enzymatic protein hydrolysis from cultured Atlantic Salmon by-products: investigation on effect of various extraction parameters using central composite rotatable design. Waste Biomass Valor (2017). doi: 10.1007/s12649-017-9998-6 Google Scholar
  19. 19.
    Hoppensack, A., Oppermann-Sanio, F.B., Steinbüchel, A.: Conversion of the nitrogen content in liquid manure into biomass and polyglutamic acid by a newly isolated strain of Bacillus licheniformis. FEMS Microbiol. Lett. 218(1), 39–45 (2003)CrossRefGoogle Scholar
  20. 20.
    Chen, X., Chen, S., Sun, M., Yu, Z.: High yield of poly-γ-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate. Bioresour. Technol. 96(17), 1872–1879 (2005)CrossRefGoogle Scholar
  21. 21.
    Dufossé, L., De La Broise, D., Guerard, F.: Evaluation of nitrogenous substrates such as peptones from fish: a new method based on Gompertz modeling of microbial growth. Curr. Microbiol. 42(1), 32–38 (2001)CrossRefGoogle Scholar
  22. 22.
    Ghorbel, S., Souissi, N., Triki-Ellouz, Y., Dufossé, L., Guérard, F., Nasri, M.: Preparation and testing of Sardinella protein hydrolysates as nitrogen source for extracellular lipase production by Rhizopus oryzae. World J. Microbiol. Biotechnol. 21(1), 33–38 (2005)CrossRefGoogle Scholar
  23. 23.
    Zhang, D., Feng, X., Zhou, Z., Zhang, Y., Xu, H.: Economical production of poly(γ-glutamic acid) using untreated cane molasses and monosodium glutamate waste liquor by Bacillus subtilis NX-2. Bioresour. Technol. 114, 583–588 (2012)CrossRefGoogle Scholar
  24. 24.
    Yan, Z., Zheng, X.-W., Chen, J.-Y., Han, J.-S., Han, B.-Z.: Effect of different Bacillus strains on the profile of organic acids in a liquid culture of Daqu. J. Inst. Brew. 119(1–2), 78–83 (2013)CrossRefGoogle Scholar
  25. 25.
    Widner, B., Behr, R., Von Dollen, S., Tang, M., Heu, T., Sloma, A., Sternberg, D., Deangelis, P.L., Weigel, P.H., Brown, S.: Hyaluronic acid production in Bacillus subtilis. Appl. Environ. Microbiol. 71(7), 3747–3752 (2005)CrossRefGoogle Scholar
  26. 26.
    Giri, S.S., Sukumaran, V., Sen, S.S., Oviya, M., Banu, B.N., Jena, P.K.: Purification and partial characterization of a detergent and oxidizing agent stable alkaline protease from a newly isolated Bacillus subtilis VSG-4 of tropical soil. J. Microbiol. 49(3), 455–461 (2011)CrossRefGoogle Scholar
  27. 27.
    Giri, S.S., Harshiny, M., Sen, S.S., Sukumaran, V., Park, S.C.: Production and characterization of a thermostable bioflocculant from Bacillus subtilis F9, isolated from wastewater sludge. Ecotoxicol. Environ. Saf. 121, 45–50 (2015)CrossRefGoogle Scholar
  28. 28.
    Zhang, C., Wu, D.-J., Zheng, X.-J.: Generation of a high gamma-polyglutamic acid-producing, high glucose-tolerant Bacillus subtilis strain via genome shuffling. J. Biobased Mater. Bioenergy 11(1), 73–77 (2017)CrossRefGoogle Scholar
  29. 29.
    American Public Health Association, American Water Works Association, Water Pollution Control Federation: Standard Methods for the Examination of Water and Wastewater, vol. 2, American Public Health Association, New York (1981)Google Scholar
  30. 30.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)CrossRefGoogle Scholar
  31. 31.
    Wu, Q., Xu, H., Xu, L., Ouyang, P.: Biosynthesis of poly(γ-glutamic acid) in Bacillus subtilis NX-2: regulation of stereochemical composition of poly(γ-glutamic acid). Process. Biochem. 41(7), 1650–1655 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Municipal and Environmental EngineeringShandong Jianzhu UniversityJinanChina
  2. 2.Co-Innovation Center of Green BuildingJinanChina
  3. 3.School of MusicUniversity of JinanJinanChina
  4. 4.School of Foreign Languages and LiteratureNanjing Tech UniversityNanjingChina

Personalised recommendations