Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 783–788 | Cite as

Sorghum Biomethane Potential Varies with the Genotype and the Cultivation Site

  • Hélène Laurence Thomas
  • David Pot
  • Eric Latrille
  • Gilles Trouche
  • Laurent Bonnal
  • Denis Bastianelli
  • Hélène CarrèreEmail author
Short Communication

Abstract

With its high biomass yield potential and its adaptability to a large spectrum of crop management schemes (dedicated, double cropping), sorghum is a relevant candidate crop for anaerobic digestion. Moreover, the large genotypic variability of its biochemical composition offers opportunities to cultivate specific varieties that fit the expectations of different end-users. Within this context, the need to evaluate the variability of biomethane potential (BMP) among different genotypes cultivated at various geographical sites has become crucial. In this study, four sorghum genotypes were grown at three different sites and harvested at the same maturity stage (dough grain stage). Consistent BMP obtained from different assays enabled genotype comparisons. The methane potentials observed between genotypes and production sites ranged between 200 ± 5 NmLCH4/gTS and 259 ± 12 NmLCH4/gTS. Evaluation of the genotypic and cultivation site effects produced highly significant results, thus accounting for 36 and 34%, respectively, of the phenotypic variability.

Keywords

Sorghum Anaerobic digestion Genotype Multi-site trials Biogas 

Notes

Acknowledgements

This work has been funded by the “Biomass For the Future” project from the French National Research Agency (ANR, Grant ANR-11-BTBR-0006-BFF). In addition, particular acknowledgements are addressed to Patrice Jeanson (Euralis Semences), and Joël Alcouffe (RAGT) who provided the sorghum samples from the sites of Mondonville and Rivières.

References

  1. 1.
    Amaducci, S., Colauzzi, M., Battini, F., Fracasso, A.: Effect of irrigation and nitrogen fertilization on the production of biogas from maize and sorghum in a water limited environment. Eur. J. Agron. 76, 54–65 (2016)CrossRefGoogle Scholar
  2. 2.
    Barbanti, L., Di, G., Grigatti, M., Bertin, L., Ciavatta, C.: Anaerobic digestion of annual and multi-annual biomass crops. Ind. Crop. Prod. 56, 137–144 (2014)CrossRefGoogle Scholar
  3. 3.
    Pacetti, T., Lombardi, L., Federici, G.: Water e energy nexus : a case of biogas production from energy crops evaluated by water footprint and life cycle assessment (LCA) methods. J. Clean. Prod. 101, 278–291 (2015)CrossRefGoogle Scholar
  4. 4.
    Windpassinger, S., Friedt, W., Frauen, M., Snowdon, R., Wittkop, B.: Designing adapted sorghum silage types with an enhanced energy density for biogas generation in temperate Europe. Biomass Bioenergy. 81, 496–504 (2015)CrossRefGoogle Scholar
  5. 5.
    Rinaldi, M., Garofalo, P.: Radiation-use efficiency of irrigated biomass sorghum in a Mediterranean environment. Crop Pasture Sci. 62, 830–839 (2011)CrossRefGoogle Scholar
  6. 6.
    Trouche, G., Bastianelli, D., Hamadou, T.V.C., Chantereau, J., Rami, J., Pot, D.: Exploring the variability of a photoperiod-insensitive sorghum genetic panel for stem composition and related traits in temperate environments. Field Crops Res. 166, 72–81 (2014)CrossRefGoogle Scholar
  7. 7.
    Mitchell, R.B., Schmer, M.R., Anderson, W.F., Jin, V., Balkcom, K.S., Kiniry, J., Coffin, A., White, P.: Dedicated energy crops and crop residues for bioenergy feedstocks in the central and eastern USA. Bioenergy Res. 9(2) 384–398 (2016)CrossRefGoogle Scholar
  8. 8.
    Masood, A., Singh, B.: Weed management in sorghum [Sorghum bicolor (L .) Moench] using crop competition : a review. Crop Prot. 95, 74–80 (2017)CrossRefGoogle Scholar
  9. 9.
    Vandenbrink, J.P., Delgado, M.P., Frederick, J.R., Feltus, F.A.: A sorghum diversity panel biofuel feedstock screen for genotypes with high hydrolysis yield potential. Ind. Crops Prod. 31, 444–448 (2010)CrossRefGoogle Scholar
  10. 10.
    Mahmood, A., Honermeier, B.: Field crops research chemical composition and methane yield of sorghum cultivars with contrasting row spacing. Field. Crop. Res. 128, 27–33 (2012)CrossRefGoogle Scholar
  11. 11.
    Deu, M., Rattunde, F., Chantereau, J.: A global view of genetic diversity in cultivated sorghums using a core collection. Genome. 49, 168–180 (2006)CrossRefGoogle Scholar
  12. 12.
    APHA American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 20th edn, American Public Health Association, Washington, (1998)Google Scholar
  13. 13.
    Van Soest, B.A., Robertson, P.J., Lewis J.D.: Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991)CrossRefGoogle Scholar
  14. 14.
    Monlau, F., Barakat, A., Steyer, J.P., Carrere, H.: Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour. Technol. 120, 241–247 (2012)CrossRefGoogle Scholar
  15. 15.
    Tukey, J.W.: Comparing individual means in the analysis of variance. Biometrics. 5(2), 99–114 (1949)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Firdous, R., Gilani, A.H.: Changes in chemical constituents of sorghum, Asia-Aust. J. Anim. Sci. 14, 935–940 (2001)Google Scholar
  17. 17.
    Sambusiti, C., Ficara, E., Malpei, F., Steyer, J.P., Carrère, H.: Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy. 55, 449–456 (2013)CrossRefGoogle Scholar
  18. 18.
    Gao, R., Yuan, X., Zhu, W., Wang, X., Chen, S., Cheng, X., Cui, Z.: Methane yield through anaerobic digestion for various maize varieties in China. Bioresour. Technol. 118, 611–614 (2012)CrossRefGoogle Scholar
  19. 19.
    Buffiere, P., Loisel, D., Bernet, N., Delgenes, J.P.: Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 53, 233–241 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Hélène Laurence Thomas
    • 1
  • David Pot
    • 2
    • 4
  • Eric Latrille
    • 1
  • Gilles Trouche
    • 2
    • 4
  • Laurent Bonnal
    • 3
    • 5
  • Denis Bastianelli
    • 3
    • 5
  • Hélène Carrère
    • 1
    Email author
  1. 1.LBEINRA, Univ de MontpellierNarbonneFrance
  2. 2.CIRADUMR AGAPMontpellierFrance
  3. 3.CIRADUMR SELMETMontpellierFrance
  4. 4.AGAPUniv Montpellier, CIRAD, INRA, INRIA, Montpellier SupagroMontpellierFrance
  5. 5.SELMETUniv Montpellier, CIRAD, INRA, INRIA, Montpellier SupagroMontpellierFrance

Personalised recommendations