Waste and Biomass Valorization

, Volume 10, Issue 4, pp 771–781 | Cite as

Production of Liquid Organic Fertilizer Through Anaerobic Digestion of Grass Clippings

  • Saman Mostafazadeh-Fard
  • Zohrab Samani
  • Paola BandiniEmail author
Original Paper


Due to the progressive increase of organic solid waste generation worldwide and the awareness of its potential negative impacts on human health and the environment, there is a need for developing sustainable techniques for valorization of organic waste. This paper addresses this challenge. The paper describes the results of three experiments (T1, T2, and T3) to produce a plant-based liquid solution, called liquid organic fertilizer (LOF), through three successive cycles (C1, C2 and C3) of anaerobic digestion and bio-leaching of grass clipping waste in pilot-scale bioreactors. The study investigated the effects of organic load (defined as the mass of total solids in the organic input [grass and molasses] divided by the total input mass [grass, molasses and water]) and the use of liquid molasses as co-digestion element (in T3) on the total nitrogen (TN), total phosphorus (TP) and potassium (K) accumulation in the leachate and the efficiency of nutrient recovery from grass clipping waste with the proposed technology. The organic loads considered were 7.0, 11.2, and 22.4% in T1, T2, and T3, respectively. The use of greater organic load in T2 led to significantly higher or comparable concentrations of TN–TP–K nutrients in the leachate at the end of each production cycle compared to T1. Co-digestion of grass clippings with molasses in test T3 showed a greater nutrient recovery from the grass substrate (RE = 53, 89, 97% for total Kjeldahl N, TP, K respectively) compared to T1 and T2. However, molasses contributes to the input nutrient content and, therefore, the net TN, TP, and K amounts should be also considered when evaluating the efficiency of the production process.

Graphical Abstract


Bio-leaching Anaerobic digestion Grass clipping Organic fertilizer Sustainability Nitrogen Potassium Phosphorus 



This material is based upon work primarily supported by the National Science Foundation (NSF) under NSF Award Number EEC-1449501. Any opinions, findings and conclusions, or recommendations expressed in this material are those of the authors, and do not necessarily reflect those of the NSF. The technology described in this paper is protected by U.S. Patent 11, 866, 827. The authors thank Victor Lara and Jason Alcantar, undergraduate research students at New Mexico State University (NMSU), and Andrea Quitugua and Jose Martinez, student participants of the Research Experience for Undergraduates (REU) program at NMSU, for their assistance with testing setup and data collection. The authors sincerely thank the NMSU golf course staff that collected the grass clippings used in the study.


  1. 1.
    United States Environmental Protection Agency (US EPA): Advancing Sustainable Materials Management: 2013 Fact Sheet, Assessing Trends in Material Generation, Recycling and Disposal in the United States. US EPA Solid Waste and Emergency Response (5306P), Washington, DC. advncng_smm_fs.pdf (2015). Accessed 5 Feb 2017
  2. 2.
    US EPA: Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks, 3rd Ed., p. 140. (2006). Accessed 5 Feb 2017
  3. 3.
    Yoshida, H., Gable, J.J., Park, J.K.: Evaluation of organic waste diversion alternatives for greenhouse gas reduction. Resour. Conserv. Recycl. 60(1), 1–9 (2012)CrossRefGoogle Scholar
  4. 4.
    Van Haaren, R., Themelis, N., Goldstein, N.: The State of Garbage in America. 17th Nationwide Survey of MSW Management in the U.S. Bio-Cycle, Emmaus (2010)Google Scholar
  5. 5.
    Bidlingmaier, W.: Odour emissions from composting plants. In: de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T. (eds.) The Science of Composting, pp. 71–80. Springer (1996)Google Scholar
  6. 6.
    Pagans, E., Barrena, R., Font, X., Sanchez, A.: Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere. 62(1), 1534–1542 (2006). doi: 10.1016/j.chemosphere.2005.06.044 CrossRefGoogle Scholar
  7. 7.
    Sánchez, A., Artola, A., Front, X., Gea, T., Barrena, R., Gabriel, D., Sanchez-Monedero, M.A., Roig, A., Cayuela, M.L., Mondini, C.: Chap. 2–Greenhouse gas from organic waste composting: emissions and measurement. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds.) CO2 Sequestration, Biofuels and Depollution. Springer (2015)Google Scholar
  8. 8.
    De Keulenaere, B., Laub, K., Michels, E., Van Poucke, R., Boeve, W., Depuydt, T., Trapp, M., Bolzonella, D., Ryckaert, B., Bamelis, L., Hamelin, L., Meers, E.: Good Practice Guide for Grass Valorisation: Recommendations for Biogas Plant Owners and Operators. GR3 Project Report. _biogas%20owners_operators_0.pdf (2016). Accessed 5 Feb 2017
  9. 9.
    Hubbe, M.A., Nazhad, M., Sánchez, C.: Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. BioResources 5(4), 2808–2854 (2010)Google Scholar
  10. 10.
    Sikora, L.J.: Effect of compost-fertilizer blends on crop growth. In: de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T. (eds.) The Science of Composting, pp. 423–430. Springer (1996)Google Scholar
  11. 11.
    Brown, S., Subler, S.: Composting and greenhouse gas emissions: A producer’s perspective. BioCycle 48(3), p. 37. (2007). Accessed 26 February 2017
  12. 12.
    Organic Trade Association (OTA). 2016 State of Organic Industry Fact Sheet. (2016). Accessed 22 Nov 2016
  13. 13.
    Fertilizers Europe. Harvesting Energy with Fertilizers. media/publications/ (2014). Accessed 5 Feb 2017
  14. 14.
    Hitaj, C., Suttles, S.: Trends in U.S. Agriculture’s Consumption and Production of Energy: Renewable Power, Shale Energy, and Cellulosic Biomass. Economic Information Bulletin No. 159. U.S. Department of Agriculture, Economic Research Service (2016). Accessed 5 Feb 2017
  15. 15.
    Worrell, E., Phylipsen, D., Einstein, D., Martin, N.: Energy Use and Energy Intensity of the U.S. Chemical Industry.Lawrence Berkeley National Laboratory. uc/item/2925w8g6 (2000). Accessed 5 Feb 2017
  16. 16.
    Gellings, C.W., Parmenter, K.E.: Energy efficiency in fertilizer production and use. In: Gellings, C.W., Blok, K., eds., Efficient Use and Conservation of Energy and Use. In Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO, EOLSS Publishers, Oxford. (2004). Accessed 5 Feb 2017
  17. 17.
    Adekunle, K.F., Okolie, J.A.: A review of biochemical process of anaerobic digestion. Adv. Biosci. Biotechnol. 6(1), 205–212 (2015). doi: 10.4236/abb.2015.63020 CrossRefGoogle Scholar
  18. 18.
    Samani, Z., Bandini, P.: Valorization of agricultural residuals through biophysical transformation into an organic soil enhancer. Abstract 367. 251st ACS National Conference, San Diego, California. project = ACS16spring&id = 2394787(2016). Accessed 5 Feb 2017
  19. 19.
    El-Mashad, H.M., Zhang, R.: Biogas production from co-digestion of dairy manure and food waste. Bioresour. Tech. 101(1), 4021–4028 (2010). doi: 10.1016/j.biortech.2010.01.027 CrossRefGoogle Scholar
  20. 20.
    Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L.: The anaerobic digestion of solid organic waste. Waste Manag. (Oxford). 31(8), 1737–1744 (2011). doi: 10.1016/j.wasman.2011.03.021 CrossRefGoogle Scholar
  21. 21.
    Misi, S.N., Forster, C.F.: Batch co-digestion of multiple-component agro-wastes. Bioresourc. Technol. 80(1), 19–28 (2001). doi: 10.1016/S0960-8524(01)00078-5 CrossRefGoogle Scholar
  22. 22.
    Sarker, S., Moller, H.B.: Regulating feeding and increasing methane yield from co-digestion of C5 molasses and cattle manure. Energy Convers. Manag. 84, 7–12 (2014). doi: 10.1016/j.enconman.2014.03.082 CrossRefGoogle Scholar
  23. 23.
    De Vrieze, J., Plovie, K., Verstraete, W., Boon, N.: Co-digestion of molasses or kitchen waste with high-rate activated sludge results in a diverse microbial community with stable methane production. J. Environ. Manag. 152, 75–82 (2015). doi: 10.1016/j.jenvman.2015.01.029 CrossRefGoogle Scholar
  24. 24.
    Voca, N., Kricka, T., Cosic, T., Rupic, V., Jukic, Z., Kalambura, S.: Digested residue as a fertilizer after the mesophilic process of anaerobic digestion. Plant Soil Environ. 51(6), 262–266 (2005)CrossRefGoogle Scholar
  25. 25.
    Huez-Lopez, M.A.: Comparative Responses to Inorganic and Organic Fertilization of Chile Pepper Plants Grown under Saline Conditions. Ph.D. Dissertation, Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico (2007)Google Scholar
  26. 26.
    Huez-Lopez, M.A., Ulery, A.L., Samani, Z., Picchioni, G., Flynn, R.P.: Response of chile pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: I. Growth and yield. Trop Subtrop Agroecosystems 14, 137–147 (2011)Google Scholar
  27. 27.
    Huez-Lopez, M.A., Ulery, A.L., Samani, Z., Picchioni, G., Flynn, R.P.: Response of chile pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: II. Nitrogen and water use efficiencies, and salt tolerance. Trop. Subtrop. Agroecosystems 14, 757–763 (2011)Google Scholar
  28. 28.
    Huez-Lopez, M.A., Ulery, A.L., Samani, Z., Picchioni, G., Flynn, R.P.: Response of chile pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: III. Ion uptake and translocation. Trop. Subtrop. Agroecosystems 14, 765–776 (2011)Google Scholar
  29. 29.
    Niemela, S.I., Sivela, C., Luoma, T., Tuovinen, O.H.: Maximum temperature limits for acidophilic, mesophilic bacteria in biological leaching systems. Appl. Environ. Microbiol. 60(9), 3444–3446 (1994)Google Scholar
  30. 30.
    Kardos, L., Juhasz, A., Palko, G., Olah, J., Barkacs, K., Zaeay, G.: Comparing of mesophilic and thermophilic anaerobic fermented sewage sludge based on chemical and biochemical tests. Appl. Ecol. Environ. Res. 9(3), 293–302 (2011). doi:  10.15666/aeer CrossRefGoogle Scholar
  31. 31.
    Kurchania, A.K.: Biomass energy. In: Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science, Baskar, C., Baskar, S., Dhillon, R.S. (eds.) Springer (2012). doi: 10.1007/978-3-642-28418-2
  32. 32.
    Kroeker, E.J., Schulte, D.D., Sparling, A.B., Lapp, H.M.: Anaerobic treatment process stability. J. Water Pollut. Control Fed. 51(1), 718–727 (1979)Google Scholar
  33. 33.
    Hach Company: Total Nitrogen, Persulfate Digestion Method 10072. DOC316.53.01085, 11th Ed., Loveland, Colorado (2015) Accessed 4 July 2017
  34. 34.
    Hach Company: Total Phosphorus, Molybdovanadate with Acid Persulfate Digestion Method 10127. DOC316.53.01123, 9th Ed., Loveland, Colorado (2014) Accessed 4 July 2017
  35. 35.
    Hach Company: Potassium, Tetraphenylborate Method 8049. DOC316.53.01127, 8th Ed., Loveland, Colorado (2014) Accessed 4 July 2017
  36. 36.
    Gavlak, R., Horneck, D., Miller, R.: Plant, Soil and Water Reference Methods for the Western Region, 3rd Ed., Western Region Extension Publications (WREP) 125. (2005). Accessed 5 Feb 2017
  37. 37.
    United States Environmental Protection Agency (US EPA) Staff: Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. USEPA Method 2007, U.S. Government Print Office, Washington (1982)Google Scholar
  38. 38.
    Merlin Christy, P., Gopinath, L.R., Divya, D.: A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew. Sustain. Energy Rev. 34, 167–173 (2014). doi: 10.1016/j.rser.2014.03.010 CrossRefGoogle Scholar
  39. 39.
    Pan, G., Smith, P., Pan, W.: The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric. Ecosyst. Environ. 129, 344–348 (2009). doi: 10.1016/j.agee.2008.10.008 CrossRefGoogle Scholar
  40. 40.
    Thomas, M., Wright, P., Blackall, L., Urbain, V., Keller, J.: Optimization of Noosa BNR plant to improve performance and reduce operating costs. Water Sci. Technol. 47(12), 141–148 (2003)CrossRefGoogle Scholar
  41. 41.
    Oehmen, A., Lemos, P.C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L.L., Reis, M.A.: Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res. 41(11), 2271–2300 (2007). doi: 10.1016/j.watres.2007.02.030 CrossRefGoogle Scholar
  42. 42.
    Tong, J., Chen, Y.: Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation. Environ. Sci. Technol. 41, 7126–7130 (2007). doi: 10.1021/es071002n CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringNew Mexico State UniversityLas CrucesUSA
  2. 2.Department of Civil EngineeringNew Mexico State UniversityLas CrucesUSA
  3. 3.Department of Civil EngineeringNew Mexico State UniversityLas CrucesUSA

Personalised recommendations