Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 4, pp 985–1002 | Cite as

Thermodynamic Quasi-Equilibrium Model for the Energetic Performances Analysis of the Air and Air–Steam Gasification of Raw and Pretreated Cotton Stalks by Torrefaction and Carbonization

  • Harouna Gado IbrahimEmail author
  • Oumar Sanogo
  • Tizane Daho
  • Salifou K. Ouiminga
  • Jean Koulidiati
Original Paper
  • 72 Downloads

Abstract

Numerical and experimental study of the gasification of raw and pretreated (torrefied and carbonized) cotton stalks were investigated. The experimental results were used to calibrate the quasi-equilibrium model by multiplying the equilibrium reaction constant with coefficient varying from 0.01 to 10 and by fixing the methane molar fraction. Values varying from 0.15 to 0.7, 0 to 0.8 and 400 to 900 K were considered for air equivalence ratio (ER), the ratio of steam to fuel (SF) and the temperature of steam respectively. LHV and energy efficiency decreased from 4528 kJ Nm− 3 and 73.5% for the raw cotton stalks to 3984 kJ Nm− 3 and 68.9% for torrefied cotton stalks and to 3815 kJ Nm− 3 and 69.6% for carbonized cotton stalks. The energy efficiency was improved by steam injection to 80, 78 and 75% for the gasification of raw, torrefied and carbonized CS respectively due to the increase of H2 and CH4. The air–steam gasification was more efficient to air gasification at a temperature of steam over than 500 K for raw cotton stalks. However, only the air–steam gasification of pretreated cotton stalks was recommended since it has the net energy efficiency (which consider the steam energy) superior to 60%.

Keywords

Equilibrium model Cotton stalks Pretreatment Energy efficiency Air–steam gasification 

Abbreviations

Nomenclature

A/F

Air to fuel ratio

\({c_p}\)

Specific heat (kJ kg− 1K− 1)

ER

Equivalence ratio

\(h{\left( T \right)_i}\)

Sensible enthalpy variation from \({T_0}\) to \(T\) (kJ mol− 1)

\({h_{i,T}}\)

Sensible enthalpy of gas species (\(i\)) at temperature \(T\)

\({h^{{T_0}}}\)

Enthalpy of formation (kJ mol− 1)

\({K_{p,1,2,3}}\)

Reaction equilibrium constant

\(LHV\)

Lower heating value (MJ Nm− 3 or MJ kg− 1)

\({L_v}\)

Water vaporisation enthalpy at 1 bar (40.644 kJ mol− 1)

\(m\)

Mass (kg)

\(M\)

Molar mass (g mol− 1)

\({n_i}\)

Mole of the produced gas species \(i\) (mole)

\({P_a}\)

Atmospheric pressure (1.013 bar)

\(R\)

Ideal gas constant (8.314 J mol− 1 K− 1)

RMS

Root-mean-square

SF

Steam to fuel ratio

\(t\)

Gasification time (min)

\({t_h}\)

Humidity content (%)

\({t_{ash}}\)

Ash content of the biomass (%)

\(T\)

Temperature (K)

\({T_0}\)

Normal temperature (273.15 K)

\({T_a}\)

Ambient temperature (K)

\({T_{mean}}\)

Gasification mean temperature (K)

\(V\)

Volume (m3)

\({V_m}\)

Molar volume (m3 mol− 1)

\({V_N}\)

Normal volume (Nm3)

\({x_i}\)

Molar fraction of gas species \(i\)

\(\left[ i \right]\)

Mole fraction of the gas species \(i\) (mol mol− 1)

\(\alpha\)

Mole of reactants (mole)

\(\eta\)

Energy efficiency (%)

\({\eta _{net}}\)

Net Energy efficiency (%)

\({\rho _{{N_2}}}\left( T \right)\)

Density of nitrogen at temperature \(T\) (kg m− 3)

Subscripts

air

Air

\(ash\)

Ash

\(b\)

Biomass type (Raw, torrefied or carbonized cotton stalks)

\(gas\)

Gas

\(i\)

Gas species\(~i\), (CO, CO2, H2, CH4, N2)

\(int\)

Introduced species

Steam

Steam

\(steo\)

Stoichiometric

\(water\)

Liquid water

References

  1. 1.
    Ouedraogo, I.M.: Electricity consumption and economic growth in Burkina Faso: A cointegration analysis. Energy Econ. 32, 524–531 (2010)CrossRefGoogle Scholar
  2. 2.
    Harouna, I.G., Oumar, S., Tizane, D., Salifou, K.O., Abouzeidi, D., Bernard, N., Jean, K.: Determination of processes suitable for cotton stalk carbonization and torrefaction by partial combustion using a metal kiln. Energy Sustain. Develop. 24, 50–57 (2015)CrossRefGoogle Scholar
  3. 3.
    Dudyński, M., Johan, C.V., Kwiatkowski, K., Sosnowska, M.: Biomass gasification: Influence of torrefaction on syngas production and tar formation. Fuel Process. Technol. 131, 203–212 (2015)CrossRefGoogle Scholar
  4. 4.
    Prins, M.J., Ptasinski, K., Janssen, F.: From coal to biomass gasification: Comparison of thermodynamic efficiency. Energy. 32, 1248–1259 (2007)CrossRefGoogle Scholar
  5. 5.
    Tapasvi, D., Rajesh, S.K., Khanh-Quang, T., Skreiberg, O., Gronli, M.: A simulation study on the torrefied biomass gasification. Energy Convers. Manage. 90, 446–457 (2015)CrossRefGoogle Scholar
  6. 6.
    Kuo, P.C., Wei, W., Chen, W.H.: Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel. 117, 1231–1241 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, W.H., Chen, C.J., Hung, C.I., Shen, C.H., Hsu, H.W.: A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor. Appl. Energy. 112, 421–430 (2013)CrossRefGoogle Scholar
  8. 8.
    Weiland, F., Martin, N., Olofsson, I., Wiinikka, H., Nordin, A.: Entrained flow gasification of torrefied wood residues. Fuel Process. Technol. 125, 51–58 (2014)CrossRefGoogle Scholar
  9. 9.
    Sarkar, M., Kumar, A., Shankar, J.T., Krushna, N.P., Danielle, D.B.: Gasification performance of switchgrass pretreated with torrefaction and densification. Appl. Energy. 127, 194–201 (2014)CrossRefGoogle Scholar
  10. 10.
    Vaezi, M., Passandideh-Fard, M., Moghiman, M., Charmchi, M.: On a methodology for selecting biomass materials for gasification purposes. Fuel Process. Technol. 98, 74–81 (2012)CrossRefGoogle Scholar
  11. 11.
    Maria, P.A., Joan, C.B., Alberto, C.: Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 14, 2841–2851 (2010)CrossRefGoogle Scholar
  12. 12.
    Sharma, A.K.: Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier. Energy Convers. Manage. 49, 832–842 (2008)CrossRefGoogle Scholar
  13. 13.
    Loha, C., Pradip, K.C., Himadri, C.: Performance of fluidized bed steam gasification of biomass—Modeling and experiment. Energy Convers. Manage. 52, 1583–1588 (2011)CrossRefGoogle Scholar
  14. 14.
    Young-il, L., Lee, U.D.: Quasi-equilibrium thermodynamic model with empirical equations for air–steam biomass gasification in fluidized-beds. Fuel Process. Technol. 128, 199–210 (2014)CrossRefGoogle Scholar
  15. 15.
    Barman, N.S., Ghosh, S., Sudipta, D.: Gasification of biomass in a fixed bed downdraft gasifier—A realistic model including tar. Bioresour. Technol. 107, 505–511 (2012)CrossRefGoogle Scholar
  16. 16.
    Chase, M.W., Curnutt, J.L., Downey, J.R., McDonald, R.A., Syverud, A.N., Valenzuela, E.A.: JANAF thermochemic tables supplement. J. Phys. Chem. Ref. Data. 11(3), 695–940 (1982)Google Scholar
  17. 17.
    Roy, P.C., Datta, A., Chakraborty, N.: Assessment of cow dung as a supplementary fuel in a downdraft biomass gasifier. Renew. Energy. 35, 379–386 (2010)CrossRefGoogle Scholar
  18. 18.
    Ragland, K.W., Aerts, D.J., Baker, A.J.: Properties of Wood for Combustion Analysis. Bioresour. Technol. 37, 161–168 (1991)CrossRefGoogle Scholar
  19. 19.
    Jarungthammachote, S., Dutta, A.: Thermodynamic equilibrium model and second law analysis of a downdraft gasifier. Energy. 32, 1660–1669 (2007)CrossRefGoogle Scholar
  20. 20.
    Cerone, N., Zimbardi, F., Villone, A., Strjiugas, N., Kiyikci, E.G.: Gasification of wood and torrefied wood with air, oxygen, and steam in a fixed-bed pilot plant. Energy Fuels. 30, 4034–4043 (2016)CrossRefGoogle Scholar
  21. 21.
    Abdul Salam, P., Bhattacharya, S.C.: A comparative study of charcoal gasification in two types of spouted bed reactors. Energy. 31, 228–243 (2006)CrossRefGoogle Scholar
  22. 22.
    Deydier, A., Marias, F., Bernada, P., Couture, F., Michon, U.: Equilibrium model for a travelling bed gasifier. Biomass Bioenergy. 35, 133–145 (2011)CrossRefGoogle Scholar
  23. 23.
    Probstein, R.F., Hicks, R.E.: Synthetic Fuels. Dover Publications, New York, pp. 63, 98–99 (2006)Google Scholar
  24. 24.
    Karatas, H., Olgun, H., Akgun, F.: Experimental results of gasification of cotton stalk and hazelnut shell in a bubbling fluidized bed gasifier under air and steam atmospheres. Fuel. 112, 494–501 (2013)CrossRefGoogle Scholar
  25. 25.
    He, P.W., Luo, S.Y., Cheng, G., Xiao, B., Cai, L., Wang, J.B.: Gasification of biomass char with air-steam in a cyclone furnace. Renew. Energy. 37, 398–402 (2012)CrossRefGoogle Scholar
  26. 26.
    Lv, P.M., Xiong, Z.H., Chang, J., Wu, C.Z., Chen, Y., Zhu, J.X.: An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour. Technol. 95, 95–101 (2004)CrossRefGoogle Scholar
  27. 27.
    Campoy, M., Gómez-Barea, A., Vidal, F.B., Ollero, P.: Air–steam gasification of biomass in a fluidised bed: Process optimisation by enriched air. Fuel Process. Technol. 90, 677–685 (2009)CrossRefGoogle Scholar
  28. 28.
    Pinto, F., André, R., Miranda, M., Neves, D., Varela, F., Santos, J.: Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel. 180, 407–416 (2016)CrossRefGoogle Scholar
  29. 29.
    Ngamchompoo, W., Triratanasirichai, K.: Quality enhancement of producer gas from cassava rhizome using high temperature air-steam downdraft gasification. Am. J. Appl. Sci. 10, 395–402 (2013)CrossRefGoogle Scholar
  30. 30.
    Gerardo, G.A.: Fixed bed countercurrent low temperature gasification of dairy biomass and coal-dairy biomass blends using air-steam as oxidizer. PhD Thesis, Texas A&M University (2009)Google Scholar
  31. 31.
    Sharma, S., Sheth, P.N.: Air–steam biomass gasification: Experiments, modeling and simulation. Energy Convers. Manage. 110, 307–318 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Harouna Gado Ibrahim
    • 1
    Email author
  • Oumar Sanogo
    • 2
  • Tizane Daho
    • 3
  • Salifou K. Ouiminga
    • 3
  • Jean Koulidiati
    • 3
  1. 1.Université Dan Dicko Dankoulodo de MaradiMaradiNiger
  2. 2.IRSAT, Institut de Recherche en Sciences Appliquées et TechnologiesOuagadougouBurkina Faso
  3. 3.LPCE, Département de PhysiqueUniversité Joseph Ki-Zerbo de OugadougouOuagadougouBurkina Faso

Personalised recommendations