Waste and Biomass Valorization

, Volume 10, Issue 3, pp 617–629 | Cite as

Extraction of Silica from Sugarcane Bagasse, Cassava Periderm and Maize Stalk: Proximate Analysis and Physico-Chemical Properties of Wastes

  • Jeleel Adekunle AdebisiEmail author
  • Johnson Olumuyiwa Agunsoye
  • Sefiu Adekunle Bello
  • Funsho O. Kolawole
  • Mercy Munyadziwa Ramakokovhu
  • Michael Olawale Daramola
  • Suleiman Bolaji Hassan
Original Paper


Indiscriminate disposal and burning of agricultural wastes constitute environmental pollution and increase in greenhouse gases emission. Renewable nature and availability of agricultural wastes has stimulated researchers to explore “wastes to wealth creation” policy. Three agricultural wastes were investigated for potential use for silica production. Proximate analysis, thermogravimetric analysis (TGA), compositional analysis, calcination and statistical analysis were carried out to quantify the ash and establish presence of silica. Response surface methodology was used for statistical analysis of CP calcination. The proximate analysis showed that sugarcane bagasse, cassava periderm and maize stalk ash contents are 1.73, 4.93 and 4.80%, respectively. The EDS results showed that their ashes contain 5.22, 6.10 and 7.01% silicon, respectively. XRF results revealed presence of 38% SiO2 in CP ash. XRD revealed presence of silica and silicates phases. TGA shows that their calcination temperature must be above 500 °C. Numerical optimization of CP calcination gave optimum condition of 700 °C for 270 min to attain 82% weight loss. Calcination regression equation exhibited high coefficient of determination (R2) of 0.8225. The three wastes contain silica and silicates from which silica could be extracted. Calcination temperature and time have been established to be significant in ash content enhancement.


Proximate analysis Calcination Agricultural wastes Cassava periderm Maize stalk Sugarcane bagasse 



The authors acknowledge Institute of NanoEngineering Research (INER), Tshwane University of Technology, Pretoria, South Africa for making available their facilities for part of this research. Special thanks for exceptional support received from Mr. Bamidele Lawrence Bayode and his team members. This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary material

12649_2017_89_MOESM1_ESM.xlsx (16 kb)
Supplementary material 1 (XLSX 16 KB)
12649_2017_89_MOESM2_ESM.tif (436 kb)
Supplementary material 2 (TIF 435 KB)


  1. 1.
    Zhao, P., Shen, Y., Ge, S., Chen, Z., Yoshikawa, K.: Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl. Energy 131, 345–367 (2014). doi: 10.1016/j.apenergy.2014.06.038 Google Scholar
  2. 2.
    Achinivu, E.C., Howard, R.M., Li, G., Gracz, H., Henderson, W.A.: Lignin extraction from biomass with protic ionic liquids. Green Chem. 16(3), 1114–1119 (2014)Google Scholar
  3. 3.
    Adepoju, A.D., Adebisi, J.A., Odusote, J.K., Ahmed, I.I., Hassan, S.B.: Preparation of Silica from Cassava Periderm. J. Solid Waste Technol. Manag. 42(3), 216–221 (2016). doi: 10.5276/JSWTM.2016.216 Google Scholar
  4. 4.
    Guo, J., Lua, A.C.: Textural and chemical properties of adsorbent prepared from palm shell by phosphoric acid activation. Mater. Chem. Phys. 80(1), 114–119 (2003)Google Scholar
  5. 5.
    Iryani, D.A., Kumagai, S., Nonaka, M., Sasaki, K., Hirajima, T.: Characterization and production of solid biofuel from sugarcane bagasse by hydrothermal carbonization. Waste Biomass Valoriz.(2017). doi: 10.1007/s12649-017-9898-9 Google Scholar
  6. 6.
    Odusote, J.K., Owalude, D.O., Olusegun, S.J., Yahya, R.A.: Inhibition efficiency of Moringa oleifera leaf extract on the corrosion of reinforced steel bar in HCl solution. West Indian J. Eng. 38(2), 64 (2016)Google Scholar
  7. 7.
    Sethupathi, S., Bashir, M.J., Akbar, Z.A., Mohamed, A.R.: Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents. Waste Manage. Res. 33(4), 303–312 (2015). doi: 10.1177/0734242X15576026 Google Scholar
  8. 8.
    Zemnukhova, L.A., Panasenko, A.E., Fedorishcheva, G.A., Ziatdinov, A.M., Polyakova, N.V., Kuryavyi, V.G.: Properties of silicon prepared from plant raw materials. Inorg Mater. 48(10), 971–976 (2012). doi: 10.1134/S0020168512100159 Google Scholar
  9. 9.
    Narnaware, S.L., Srivastava, N., Vahora, S.: Gasification: an alternative solution for energy recovery and utilization of vegetable market waste. Waste Manag. Res. 35(3), 276–284 (2016)Google Scholar
  10. 10.
    Shao, L., Jiang, W., Feng, L., Zhang, L.: Co-production of activated carbon, fuel-gas, and oil from the pyrolysis of corncob mixtures with wet and dried sewage sludge. Waste Manage. Res. 32(6), 519–526 (2014). doi: 10.1177/0734242X14535652 Google Scholar
  11. 11.
    Moreira, R., dos Reis Orsini, R., Vaz, J.M., Penteado, J.C., Spinacé, E.V.: Production of biochar, bio-oil and synthesis gas from cashew nut shell by slow pyrolysis. Waste Biomass Valoriz. (2016). doi: 10.1007/s12649-016-9569-2 Google Scholar
  12. 12.
    Mohlala, L.M., Bodunrin, M.O., Awosusi, A.A., Daramola, M.O., Cele, N.P., Olubambi, P.A.: Beneficiation of corncob and sugarcane bagasse for energy generation and materials development in Nigeria and South Africa: a short overview. Alexandria Eng. J. 55(3), 3025–3036 (2016). doi: 10.1016/j.aej.2016.05.014 Google Scholar
  13. 13.
    Sindhu, R., Gnansounou, E., Binod, P., Pandey, A.: Bioconversion of sugarcane crop residue for value added products: an overview. Renewable Energy 98, 203–215 (2016). doi: 10.1016/j.renene.2016.02.057 Google Scholar
  14. 14.
    Vaibhav, V., Vijayalakshmi, U., Roopan, S.M.: Agricultural waste as a source for the production of silica nanoparticles. Spectrochim. Acta A 139, 515–520 (2015). doi: 10.1016/j.saa.2014.12.083 Google Scholar
  15. 15.
    Deng, M., Zhang, G., Zeng, Y., Pei, X., Huang, R., Lin, J.: Simple process for synthesis of layered sodium silicates using rice husk ash as silica source. J. Alloys Compd. 683, 412–417 (2016). doi: 10.1016/j.jallcom.2016.05.115 Google Scholar
  16. 16.
    Adesanya, D.A., Raheem, A.A.: A study of the workability and compressive strength characteristics of corn cob ash blended cement concrete. Constr. Build. Mater. 23(1), 311–317 (2009). doi: 10.1016/j.conbuildmat.2007.12.004 Google Scholar
  17. 17.
    Oladele, I.O.: Effect of bagasse fibre reinforcement on the mechanical properties of polyester composites. J. Assoc. Prof. Eng. Trinidad Tobago 42(1), 12–15 (2014)Google Scholar
  18. 18.
    Durowaye, S.I., Lawal, G.I., Akande, M.A., Durowaye, V.O.: Mechanical properties of particulate coconut shell and palm fruit polyester composites. Int. J. Mater. Eng. 4(4), 141–147 (2014). doi: 10.5923/j.ijme.20140404.04 Google Scholar
  19. 19.
    Agunsoye, J.O., Bello, S.A., Azeez, S.O., Yekinni, A.A., Adeyemo, R.G.: Recycled polypropylene reinforced coconut shell composite: surface treatment morphological, mechanical and thermal studies. Int. J. Compos. Mater. 4(3), 168–178 (2014)Google Scholar
  20. 20.
    D 3176: Standard practice for ultimate analysis of coal and coke. American Society for Testing and Materials, ASTM International, West Conshohocken, (2002)Google Scholar
  21. 21.
    D 6316: Standard test method for determination of total, combustible and carbonate carbon in solid residues from coal and coke. American Society for Testing and Materials, ASTM International, West Conshohocken, (2000)Google Scholar
  22. 22.
    Cheng, X., Tang, Y., Wang, B., Jiang, J.: Improvement of charcoal yield and quality by two-step pyrolysis on rice husks. Waste Biomass Valoriz. (2016). doi: 10.1007/s12649-016-9736-5 Google Scholar
  23. 23.
    Trninić, M., Jovović, A., Stojiljković, D.: A steady state model of agricultural waste pyrolysis: a mini review. Waste Manage. Res. 34(9), 851–865 (2016). doi: 10.1177/0734242X16649685 Google Scholar
  24. 24.
    García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Biomass proximate analysis using thermogravimetry. Bioresour. Technol. 139, 1–4 (2013). doi: 10.1016/j.biortech.2013.03.197 Google Scholar
  25. 25.
    Titiladunayo, I.F., McDonald, A.G., Fapetu, O.P.: Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valoriz. 3(3), 311–318 (2012). doi: 10.1007/s12649-012-9118-6 Google Scholar
  26. 26.
    Chandrasekhar, S., Pramada, P.N., Praveen, L.: Effect of organic acid treatment on the properties of rice husk silica. J. Mater. Sci. 40(24), 6535–6544 (2005). doi: 10.1007/s10853-005-1816-z Google Scholar
  27. 27.
    Yuvakkumar, R., Elango, V., Rajendran, V., Kannan, N.: High-purity nano silica powder from rice husk using a simple chemical method. J. Exp. Nanosci. Nanotechnol. 9(3), 272–281 (2014). doi: 10.1080/17458080.2012.656709 Google Scholar
  28. 28.
    El-Sayed, S.A., Mostafa, M.E.: Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste Biomass Valoriz. 6(3), 401–415 (2015). doi: 10.1007/s12649-015-9354-7 Google Scholar
  29. 29.
    Adebisi, J.A., Agunsoye, J.O., Bello, S.A., Ahmed, I.I., Ojo, O.A., Hassan, S.B.: Potential of producing solar grade silicon nanoparticles from selected agro-wastes: a review. Sol. Energy 142, 68–86 (2017). doi: 10.1016/j.solener.2016.12.001 Google Scholar
  30. 30.
    Castellari, M., Versari, A., Fabiani, A., Parpinello, G.P., Galassi, S.: Removal of ochratoxin a in red wines by means of adsorption treatments with commercial fining agents. J. Agric. Food. Chem. 49(8), 3917–3921 (2001). doi: 10.1021/jf010137o Google Scholar
  31. 31.
    Chattoraj, S., Shi, L., Sun, C.C.: Profoundly improving flow properties of a cohesive cellulose powder by surface coating with nano-silica through comilling. J. Pharm. Sci. 100(11), 4943–4952 (2011). doi: 10.1002/jps.22677 Google Scholar
  32. 32.
    Joiner, A.: A silica toothpaste containing blue covarine: a new technological breakthrough in whitening. Int. Dent. J. 59(5), 284–288 (2009)Google Scholar
  33. 33.
    Joshi, H.H., Gertz, R.E., da Gloria Carvalho, M., Beall, B.W.: Use of silica desiccant packets for specimen storage and transport to evaluate pneumococcal nasopharyngeal carriage among Nepalese children. J Clin Microbiol. 46(9), 3175–3176 (2008)Google Scholar
  34. 34.
    Negre, L., Daffos, B., Taberna, P.-L., Simon, P.: Silica-based ionogel electrolyte for electrical double layer capacitors. Meeting Abstracts 2016, vol. 7, pp. 952–952. The Electrochemical SocietyGoogle Scholar
  35. 35.
    Tan, S.C., Yiap, B.C.: DNA, RNA, and protein extraction: the past and the present. BioMed Res. Int. (2009). doi: 10.1155/2009/574398 Google Scholar
  36. 36.
    Westphal, A.J., Bechtel, H.A., Brenker, F.E., Butterworth, A.L., Flynn, G., Frank, D.R., Gainsforth, Z., Hillier, J.K., Postberg, F., Simionovici, A.S., Sterken, V.J., Stroud, R.M., Allen, C., Anderson, D., Ansari, A., Bajt, S., Bastien, R.K., Bassim, N., Borg, J., Bridges, J., Brownlee, D.E., Burchell, M., Burghammer, M., Changela, H., Cloetens, P., Davis, A.M., Doll, R., Floss, C., Grün, E., Heck, P.R., Hoppe, P., Hudson, B., Huth, J., Hvide, B., Kearsley, A., King, A.J., Lai, B., Leitner, J., Lemelle, L., Leroux, H., Leonard, A., Lettieri, R., Marchant, W., Nittler, L.R., Ogliore, R., Ong, W.J., Price, M.C., Sandford, S.A., Tresseras, J.-A.S., Schmitz, S., Schoonjans, T., Silversmit, G., Solé, V.A., Srama, R., Stadermann, F., Stephan, T., Stodolna, J., Sutton, S., Trieloff, M., Tsou, P., Tsuchiyama, A., Tyliszczak, T., Vekemans, B., Vincze, L., Von Korff, J., Wordsworth, N., Zev D., Zolensky, M.E., Dusters, S.H.: Final reports of the stardust interstellar preliminary examination. Meteor. Planet. Sci. 49(9), 1720–1733 (2014). doi: 10.1111/maps.12221 Google Scholar
  37. 37.
    Yu, D.P., Hang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C., Feng, S.Q.: Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett. 73(21), 3076–3078 (1998)Google Scholar
  38. 38.
    E 1755: Standard test method for ash in biomass. American Society for Testing and Materials, ASTM International, West Conshohocken, (2001)Google Scholar
  39. 39.
    E 1756: Standard test method for determination of total solids in biomass. American Society for Testing and Materials, ASTM International, West Conshohocken, (2008)Google Scholar
  40. 40.
    E 872: Standard test method for volatile matter in the analysis of particulate wood fuels. American Society for Testing and Materials, ASTM International, West Conshohocken, (1998)Google Scholar
  41. 41.
    McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83(1), 37–46 (2002)Google Scholar
  42. 42.
    Sudaryanto, Y., Hartono, S.B., Irawaty, W., Hindarso, H., Ismadji, S.: High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour. Technol. 97(5), 734–739 (2006). doi: 10.1016/j.biortech.2005.04.029 Google Scholar
  43. 43.
    Demirbas, A.: Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploitat. 20(1), 105–111 (2002)Google Scholar
  44. 44.
    He, C., Giannis, A., Wang, J.-Y.: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Appl. Energy 111, 257–266 (2013). doi: 10.1016/j.apenergy.2013.04.084 Google Scholar
  45. 45.
    Çepelioğullar, Ö., Pütün, A.E.: A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes. Waste Manage. Res. 32(10), 971–979 (2014). doi: 10.1177/0734242X14542684 Google Scholar
  46. 46.
    Çepelioğullar, Ö., Pütün, A.E.: Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. Energy Convers. Manag. 75, 263–270 (2013). doi: 10.1016/j.enconman.2013.06.036 Google Scholar
  47. 47.
    Lv, G.-J., Wu, S.-B., Lou, R.: Kinetic study of the thermal decomposition of hemicellulose isolated from corn stalk. BioResources. 5(2), 1281–1291 (2010)Google Scholar
  48. 48.
    Nurhayati, A., Fauziah, S.: A comparison study on oven and solar dried empty fruit bunches. J. Environ. Earth Sci. 3(2), 145–156 (2013)Google Scholar
  49. 49.
    Munir, S., Daood, S.S., Nimmo, W., Cunliffe, A.M., Gibbs, B.M.: Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol. 100(3), 1413–1418 (2009). doi: 10.1016/j.biortech.2008.07.065 Google Scholar
  50. 50.
    Banerjee, H.D., Sen, S., Acharya, H.N.: Investigations on the production of silicon from rice husks by the magnesium method. Mater. Sci. Eng. 52(2), 173–179 (1982). doi: 10.1016/0025-5416(82)90046-5 Google Scholar
  51. 51.
    Chen, W.-H., Lu, K.-M., Tsai, C.-M.: An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl. Energy 100, 318–325 (2012). doi: 10.1016/j.apenergy.2012.05.056 Google Scholar
  52. 52.
    Asina, F., Brzonova, I., Voeller, K., Kozliak, E., Kubátová, A., Yao, B., Ji, Y.: Biodegradation of lignin by fungi, bacteria and laccases. Bioresour. Technol. 220, 414–424 (2016). doi: 10.1016/j.biortech.2016.08.016 Google Scholar
  53. 53.
    Hu, J., Xiao, R., Shen, D., Zhang, H.: Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-fourier transform infrared spectroscopy. Bioresour. Technol. 128, 633–639 (2013). doi: 10.1016/j.biortech.2012.10.148 Google Scholar
  54. 54.
    Popova, E., Chernov, A., Maryandyshev, P., Brillard, A., Kehrli, D., Trouvé, G., Lyubov, V., Brilhac, J.-F.: Thermal degradations of wood biofuels, coals and hydrolysis lignin from the Russian Federation: Experiments and modeling. Bioresour. Technol. 218, 1046–1054 (2016). doi: 10.1016/j.biortech.2016.07.033 Google Scholar
  55. 55.
    Shen, D., Hu, J., Xiao, R., Zhang, H., Li, S., Gu, S.: Online evolved gas analysis by thermogravimetric-mass spectroscopy for thermal decomposition of biomass and its components under different atmospheres: part I: lignin. Bioresour. Technol. 130, 449–456 (2013). doi: 10.1016/j.biortech.2012.11.081 Google Scholar
  56. 56.
    Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N.R., Moeck, P., Downs, R.T., Le Bail, A.: Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 40(D1), D420-D427 (2012). doi: 10.1093/nar/gkr900 Google Scholar
  57. 57.
    Zemnukhova, L.A., Fedorishcheva, G.A., Egorov, A.G., Sergienko, V.I.: Recovery conditions, impurity composition, and characteristics of amorphous silicon dioxide from wastes formed in rice production. Russ. J. Appl. Chem. 78(2), 319–323 (2005). doi: 10.1007/s11167-005-0283-2 Google Scholar
  58. 58.
    Patel, M., Karera, A., Prasanna, P.: Effect of thermal and chemical treatments on carbon and silica contents in rice husk. J. Mater. Sci. 22(7), 2457–2464 (1987). doi: 10.1007/BF01082130 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Jeleel Adekunle Adebisi
    • 1
    • 2
    Email author
  • Johnson Olumuyiwa Agunsoye
    • 1
  • Sefiu Adekunle Bello
    • 3
  • Funsho O. Kolawole
    • 4
  • Mercy Munyadziwa Ramakokovhu
    • 5
  • Michael Olawale Daramola
    • 6
  • Suleiman Bolaji Hassan
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of LagosLagosNigeria
  2. 2.Department of Materials and Metallurgical EngineeringUniversity of IlorinIlorinNigeria
  3. 3.Department Materials Science and EngineeringKwara State UniversityMaleteNigeria
  4. 4.Department of Materials and Metallurgical EngineeringFederal University Oye-EkitiOyeNigeria
  5. 5.Department of Chemical, Metallurgical and Materials EngineeringTshwane University of TechnologyPretoriaSouth Africa
  6. 6.School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built EnvironmentUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations