Waste and Biomass Valorization

, Volume 10, Issue 3, pp 585–597 | Cite as

Effect of Kraft Lignin from Hardwood on Viscoelastic, Thermal, Mechanical and Aging Performance of High Pressure Laminates

  • María Eugenia Taverna
  • Oriana Tassara
  • Juan Morán
  • Marisa Sponton
  • Patricia Frontini
  • Verónica Nicolau
  • Diana EstenozEmail author
Original Paper


In this work, the synthesis and characterization of phenol-formaldehyde resols modified with 10, 20 and 30 wt% of Kraft lignin (a waste from pulp industry) from hardwood were studied. In all cases, the Kraft lignin was activated by hydroxymethylation. The resols characterization involved industrial measurements of free formaldehyde, viscosity, total solids and density. The resins were used for the industrial impregnation of Kraft-type paper and the production of laboratory laminates. The mechanical and thermal properties of the laminates were determined. Mechanical measurements included tensile, flexural, impact and interlaminar tests. Thermogravimetric and dynamic mechanical analysis were used for the thermal characterization. In addition, the aging of materials in water was studied. No significant differences in mechanical and thermal properties between traditional and modified materials were found with replacement up to 20 wt% of phenol. Modified laminates exhibited better water resistance due to the lignin hydrophobicity. This work was carried out in collaboration with Centro S.A., San Francisco, Córdoba, Argentina, a high pressure-laminates industry.


Biobased materials Kraft lignin Laminates 



The authors are grateful to the National Council of Scientific and Technical Research (CONICET), University of Litoral (U.N.L.), National Technological University (U.T.N.), and National Agency for Scientific and Technological Promotion (ANPCyT) for the financial support.


  1. 1.
    Imam, S. H., Bilbao-Sainz, C., Chiou, B. S., Glenn, G. M., Orts, W. J.: Biobased adhesives, gums, emulsions, and binders: current trends and future prospects. J. Adhes. Sci. Tech. 27(18–19), 1972–1997 (2013). doi: 10.1080/01694243.2012.696892 CrossRefGoogle Scholar
  2. 2.
    Zhao, L. F., Liu, Y., Xu, Z. D., Zhang, Y. Z., Zhao, F., Zhang, S. B.: State of research and trends in development of wood adhesives., For. Stud. China 2011, 13(4), 321–326, doi: 10.1007/s11632-013-0401-9 CrossRefGoogle Scholar
  3. 3.
    Ghaffar, S.H., Fan, M.: Lignin in straw and its applications as an adhesive. Int. J. Adhes. Adhes. 2014, 48, 92–101. doi: 10.1016/j.ijadhadh.2013.09.001 CrossRefGoogle Scholar
  4. 4.
    Yang, S., Yuan, t; Sun, R.: Application of Technical Lignin in Wood Adhesive. In: Inamuddin (ed.) Green Polymer Composites Technology: Properties and Applications, pp. 127–148. CRC Press, Boca Raton (2016). doi: 10.1201/9781315371184-9 CrossRefGoogle Scholar
  5. 5.
    Farag, S., Chaouki, J.: Economics evaluation for on-site pyrolysis of kraft lignin to value-added chemicals. Bioresour. Technol. 2015, 175, 254–261. doi: 10.1016/j.biortech.2014.10.096 CrossRefGoogle Scholar
  6. 6.
    Stücker, A., Schütt, F., Saake, B., Lehnen, R.: Lignins from enzymatic hydrolysis and alkaline extraction of steam refined poplar wood: utilization in lignin-phenol-formaldehyde resins. Ind Crops Prod. 2016, 85, 300–308. doi: 10.1016/j.indcrop.2016.02.062 CrossRefGoogle Scholar
  7. 7.
    Wang, G., Chen, H.: Carbohydrate elimination of alkaline-extracted lignin liquor by steam explosion and its methylolation for substitution of phenolic adhesive., Ind Crops Prod. 2014, 53, 93–101. doi: 10.1016/j.indcrop.2013.12.020 CrossRefGoogle Scholar
  8. 8.
    Chawla, V.K., Yadav, R., Pandey, C.N., Jain, R.K., Dixit, A.K.: Development of PF resin from rice straw lignin solid for plywood composite. Indian For. 2013, 139(8), 720–725.
  9. 9.
    Cavdar, A.D., Kalaycioglu, H., Hiziroglu, S.: Some of the properties of oriented strandboard manufactured using kraft lignin phenolic resin. J. Mater. Process. Technol. 2008, 202(1):559–563CrossRefGoogle Scholar
  10. 10.
    El Mansouri, N.-E., Salvadó, Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind. Crops Prod., 2006, 24(1), 8–16. doi: 10.1016/j.indcrop.2005.10.002 CrossRefGoogle Scholar
  11. 11.
    Ҫetin, N.S., Özmen, N.: Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: II. Particleboard production and properties., Int. J. Adhes. Adhes. 2002, 22(6), 481–486. doi: 10.1016/S0143-7496(02)00059-3 CrossRefGoogle Scholar
  12. 12.
    Vazquez, G., Rodríguez-Bona, C., Freire, S., Gonzalez-Alvarez, J., Antorrena, G.: Acetosolv pine lignin as copolymer in resins for manufacture of exterior grade plywoods. Bioresour. technol. 70(2), 209–214 (1999). doi: 10.1016/S0960-8524(99)00020-6 CrossRefGoogle Scholar
  13. 13.
    Nimz, H.: Lignin-based wood adhesives. In: Pizzi, A. (ed.) Wood Adhesion Chemistry and Technology, pp. 247–288. Marcel Dekker, New York (1983)Google Scholar
  14. 14.
    Pizzi, A., Cameron, F.-A., van der Klashorst, G.H.: Soda bagasse lignin adhesives for particleboard in adhesives from renewable resources, American Chemical Society, Washington, pp. 82–95. ACS Publications, Washington, DC (1989). doi: 10.1021/bk-1989-0385.ch007
  15. 15.
    Mahendran, A.R., Wuzella, G., Kandelbauer, A.: Thermal characterization of kraft lignin phenol-formaldehyde resin for paper impregnation., J. Adhes. Sci. Technol. 2010, 24(8–10) 1553–1565. doi: 10.1163/016942410X500936 CrossRefGoogle Scholar
  16. 16.
    Seidel, M.P., Fuller, T.J.: Sulfur containing lignin modified alkaline earth treated phenolic impregnating resins for core layers of humidity resistant laminates, Patent US44761931984, 1984Google Scholar
  17. 17.
    Sibalis, J.I., Rosario, R.B.F.: Laminates containing lignosulfonate-extended phenolic resins and process for manufacturing same, Patent EP0020004A1, 1980Google Scholar
  18. 18.
    Seidel, R.: Properties of laminated plastics made from lignin and lignin-phenolic resin-impregnated papers, 1944, US Department of Agriculture, Forest Service, Forest Products Laboratory.
  19. 19.
    Brown, C., Ball, J.: World View of Plantation Grown Wood, Oceania, 2000, 2, p. 0.01.
  20. 20.
    Malutan, T., Nicu, R., Popa, V. I.: Contribution to the study of hydroxymetylation reaction of alkali lignin. BioResources 2007, 3(1):13–20.
  21. 21.
    Zhao, L.W., Griggs, B.F., Chen, C.L., Gratzl, J.S.;. Hse, C.Y.: Utilization of softwood kraft lignin as adhesive for the manufacture of reconstituted wood. J. Wood. Chem. Technol. 1994, 14(1), 127–145. doi: 10.1080/02773819408003090 CrossRefGoogle Scholar
  22. 22.
    Marton, J., Marton, T., Falkehag, S.I.: Alkali-catalyzed reactions of formaldehyde with lignins in advances in chemistry. ACS Publications, Washington, DC (1966). doi: 10.1021/ba-1966-0059.ch010 Google Scholar
  23. 23.
    Zhang, Z., Liang, G., Wang, J., Ren, P.: Epoxy/POSS organic–inorganic hybrids: viscoelastic, mechanical properties and micromorphologies. Polym. Compd., 2007, 28(2), 175–179. doi: 10.1002/pc.20281 CrossRefGoogle Scholar
  24. 24.
    Li, G. Z., Wang, L., Toghiani, H., Daulton, T. L., Koyama, K., Pittman, C. U.: Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends, Macromolecules., 2001, 34(25), 8686–8693. doi: 10.1021/ma011117q
  25. 25.
    Park, S.J., Seo, M.K., Lee, J.R: Isothermal cure kinetics of epoxy/phenol-novolac resin blend system initiated by cationic latent thermal catalyst. J. Polym. Sci. A Polym. Chem. 38(16), 2945–2956 (2000). doi: 10.1002/1099-0518(20000815)38:16<2945::AID-POLA120>3.0.CO;2-6 CrossRefGoogle Scholar
  26. 26.
    Turi, E.: Thermal Characterization of Polymeric Materials. Elsevier, New York (1981)Google Scholar
  27. 27.
    Alonso, M. V., Oliet, M., García, J., Rodríguez, F., Echeverría, J.: Master curve and time–temperature–transformation cure diagram of lignin–phenolic and phenolic resol resins. J. Appl. Polym. Sci. 103(5), 3362–3369 (2007). doi: 10.1002/app.25497 CrossRefGoogle Scholar
  28. 28.
    Danielson, B., Simonson, R.: Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood., J. Adhes. Sci. Technol. 12(9), 923–939 (1998). doi: 10.1163/156856198X00542 CrossRefGoogle Scholar
  29. 29.
    Taverna, M. E., Ollearo, R., Morán, J., Nicolau, V., Estenoz, D., Frontini, P.: Mechanical evaluation of laminates based on phenolic resins using lignins as partial substitutes for phenol. BioResources 10(4), 8325–8338 (2015).
  30. 30.
    Taverna, M. E., Ollearo, R., Morán, J., Nicolau, V., Estenoz, D., Frontini, P.: Synthesis and mechanical properties of laminates based on phenolic resins modified with sodium lignosulfonate. LAAR 46, 3–4 (2016).
  31. 31.
    Swamy, R. P., Kumar, G. M., Vrushabhendrappa, Y., Joseph, V.: Study of areca-reinforced phenol formaldehyde composites. J. Reinf. Plast. Compos. 23(13), 1373–1382 (2004). doi: 10.1177/0731684404037049 CrossRefGoogle Scholar
  32. 32.
    Zakis, G.F.: Functional analysis of lignins and their derivatives. Tappi Press, Atlanta (1994)Google Scholar
  33. 33.
    Kaar, W. E., Cool, L. G., Merriman, M. M., Brink, D. L.: The complete analysis of wood polysaccharides using HPLC. J. Wood Chem. Technol. 11(4), 447–463 (1991). doi: 10.1080/02773819108051086 CrossRefGoogle Scholar
  34. 34.
    El Mansouri, N.-E.: Despolimerización de lignina para su aprovechamiento en adhesivos para producir tableros de partículas. Universitat Rovira i Virgili, Tarragona (2007)Google Scholar
  35. 35.
    Tobolsky, A. V., Carlson, D. W., Indictor, N.: Rubber elasticity and chain configuration. J. Polym. Sci. Part A 54(159), 175–192 (1960). doi: 10.1002/pol.1961.1205415913 Google Scholar
  36. 36.
    Brodin, I., Sjöholm, E., Gellerstedt, G.: Kraft lignin as feedstock for chemical products: the effects of membrane filtration. Holzforschung, 63(3), 290–297 (2009). doi: 10.1515/HF.2009.049 CrossRefGoogle Scholar
  37. 37.
    Lin, S.Y., Dence, C. W.: Methods in Lignin Chemistry. Springer, Berlin (2012)Google Scholar
  38. 38.
    Laurichesse, S., Avérous, L.: Chemical modification of lignins: towards biobased polymers., ‎Prog. Polym. Sci. 39(7), 1266–1290 (2014). doi: 10.1016/j.progpolymsci.2013.11.004 CrossRefGoogle Scholar
  39. 39.
    Montgomery, D.C.: Design and Analysis of Experiments. Wiley, Hoboken (1991)zbMATHGoogle Scholar
  40. 40.
    Wheeler, B., lmPerm: Permutation Tests for Linear Models in R Package Version, vol. 1, pp. 1–2 (2016).
  41. 41.
    Muñoz, E., García-Manrique, J.A.: Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites., Int. J. Polym. Sci. (2015). doi: 10.1155/2015/390275 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • María Eugenia Taverna
    • 1
    • 2
  • Oriana Tassara
    • 3
  • Juan Morán
    • 3
  • Marisa Sponton
    • 1
  • Patricia Frontini
    • 3
  • Verónica Nicolau
    • 2
  • Diana Estenoz
    • 1
    Email author
  1. 1.Instituto de Desarrollo Tecnológico para la Industria Química, INTECSanta FeArgentina
  2. 2.GPol, Departamento de Ingeniería Química, Facultad Regional San FranciscoUniversidad Tecnológica NacionalSan Francisco, CórdobaArgentina
  3. 3.Instituto de Investigaciones en Ciencia y Tecnología de MaterialesINTEMAMar del Plata, Buenos AiresArgentina

Personalised recommendations